首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm.  相似文献   

2.
Rapid development of nanotechnologies and their applications in clinical research have raised concerns about the adverse effects of nanoparticles (NPs) on human health and environment. NPs can be directly taken up by organs exposed, but also translocated to secondary organs, such as the central nervous system (CNS) after systemic- or subcutaneous administration, or via the olfactory system. The CNS is particularly vulnerable during development and recent reports describe transport of NPs across the placenta and even into brain tissue using in vitro and in vivo experimental systems. Here, we investigated whether well-characterized commercial 20 and 80 nm Au- and AgNPs have an effect on human embryonic neural precursor cell (HNPC) growth. After two weeks of NP exposure, uptake of NPs, morphological features and the amount of viable and dead cells, proliferative cells (Ki67 immunostaining) and apoptotic cells (TUNEL assay), respectively, were studied. We demonstrate uptake of both 20 and 80 nm Au- and AgNPs respectively, by HNPCs during proliferation. A significant effect on the sphere size- and morphology was found for all cultures exposed to Au- and AgNPs. AgNPs of both sizes caused a significant increase in numbers of proliferating and apoptotic HNPCs. In contrast, only the highest dose of 20 nm AuNPs significantly affected proliferation, whereas no effect was seen on apoptotic cell death. Our data demonstrates that both Au- and AgNPs interfere with the growth profile of HNPCs, indicating the need of further detailed studies on the adverse effects of NPs on the developing CNS.  相似文献   

3.
This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag+ ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag+ ion and 720 min. The UV–Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM–EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria.  相似文献   

4.
The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs), which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites.  相似文献   

5.
Silver nanoparticles (AgNPs) have gained great interest in nanotechnology, biotechnology and medicine. The green synthesis of nanoparticles has received an increasing attention because of it’s maximize efficiency and minimize health and environmental hazards as compared to other conventional chemical synthesis. In this study, we reported biosynthesis of AgNPs by aqueous Annona squamosa L. leaf extract and its characterization by UV-visible spectroscopy (UV–vis), Field emission gun scanning electron microscopy (FEG-SEM), X-ray energy dispersive spectroscopy (EDX), Transmission electron microscopy (TEM), Selected-area electron diffraction (SAED) and Fourier transform infra-red spectroscopy (FTIR). The results indicated that AgNPs formed were spherical in shape with size ranging from 14 to 40 nm with an average diameter 28.47 nm. Furthermore, it was observed that the AgNPs exhibited an antibacterial activity against different Gram positive and Gram negative microorganisms. Our report confirmed that the ALE is a very good eco-friendly and nontoxic bioreductant for the synthesis of AgNPs and opens up further opportunities for fabrication of antibacterial drugs, medical devices and wound dressings.  相似文献   

6.
Interestingly pharmaceutical sciences are using nanoparticles (NPs) to design and develop nanomaterials-based drugs. However, up to recently, it has not been well realized that NPs themselves may impose risks to the biological systems. In this study, the interaction of silver nanoparticles (AgNPs) with tau protein and SH-SY5Y neuroblastoma cell line, as potential nervous system models, was examined with a range of techniques including intrinsic fluorescence spectroscopy, circular dichroism (CD) spectroscopy, 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and acridine orange/ethidium bromide (AO/EB) dual staining method. Fluorescence study showed that AgNPs with a diameter of around 10–20 nm spontaneously form a static complex with tau protein via hydrogen bonds and van der Waals interactions. CD experiment revealed that AgNPs did not change the random coil structure of tau protein. Moreover, AgNPs showed to induce SH-SY5Y neuroblastoma cell mortality through fragmentation of DNA which is a key feature of apoptosis. In conclusion, AgNPs may induce slight changes on the tau protein structure. Also, the concentration of AgNPs is the main factor which influences their cytotoxicity. Since, all adverse effects of NPs are not well detected, so probably additional more specific testing would be needed.  相似文献   

7.
柴春镜  白红娟 《微生物学通报》2010,37(12):1798-1804
近年来,利用沼泽红假单胞菌合成银纳米粒子作为一种可靠和环境友好的方法出现。主要利用沼泽红假单胞菌的细胞滤液来还原银离子。制备的纳米粒子用紫外可见光谱(UV-vis)、X射线衍射光谱(XRD)和透射电镜(TEM)进行表征。含有银粒子溶液的UV-vis光谱显示在420 nm-460 nm处出现银纳米粒子的吸收峰。TEM图像表明所形成的银纳米粒子的粒径范围为5 nm-20 nm。纳米粒子的XRD图谱证明产物为金属银。所制备的银纳米粒子对大肠杆菌和金黄色葡萄球菌作抑菌性试验。  相似文献   

8.
The present study is to investigate the antitumor, antioxidant and antibacterial potential of silver nanoparticles (Ag NPs) synthesized from a phenolic derivative 4-N-methyl benzoic acid, isolated from a medicinal plant (Memecylon umbellatum Burm F). The Bio-inspired nanoparticles (NPs) were analyzed by using UV–vis spectroscopy, FTIR, HRTEM, Zeta potential and XRD techniques. The UV–vis spectroscopy study at the band of 430 nm confirmed the nanoparticles formation. HRTEM report showed that the AgNPs synthesized were in the size range 7–23 nm. The harvested nanoparticles were subjected to anti-bacterial assay and a dose dependent inhibitory action was observed against the tested human pathogens. Among the tested bacteria, Acinetobacter baumannii was found to be highly sensitive to AgNPs (diameter of zone of inhibition was 31 mm). Further, the silver nanoparticles exhibited a good anti-tumor activity against the breast cancer cell line (MCF 7) with an IC50 value of 42.19 µg/mL. As the present study confirmed a good antibacterial, antioxidant and antitumor activity in the nanoparticles synthesized using 4-N-methyl benzoic acid derived from a medicinal plant, the product can be further tested to formulate a good lead compound for biomedical applications.  相似文献   

9.
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.  相似文献   

10.
In the present study, silver nanoparticles (AgNPs) with an average particle size of 5.5 ± 3.1 nm were biosynthesized using an endophytic fungus Cryptosporiopsis ericae PS4 isolated from the ethno-medicinal plant Potentilla fulgens L. The nanoparticles were characterized using UV-visible spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), selective area electron diffraction (SAED), and energy dispersive X-ray (EDX) spectroscopy analysis. Antimicrobial efficacy of the AgNPs was analyzed singly and in combination with the antibiotic/antifungal agent chloramphenicol/fluconazole, against five pathogenic microorganisms-Staphylococcus aureus MTCC96, Salmonella enteric MTCC735, Escherichia coli MTCC730, Enterococcus faecalis MTCC2729, and Candida albicans MTCC 183. The activity of AgNPs on the growth and morphology of the microorganisms was studied in solid and liquid growth media employing various susceptibility assays. These studies demonstrated that concentrations of AgNPs alone between 10 and 25 μM reduced the growth rates of the tested bacteria and fungus and revealed bactericidal/fungicidal activity of the AgNPs by delaying the exponential and stationary phases. Examination using SEM showed pits and ruptures in bacterial cells indicating fragmented cell membrane and severe cell damage in those cultures treated with AgNPs. These experimental findings suggest that the biosynthesized AgNPs may be a potential antimicrobial agent.  相似文献   

11.
In this report, we describe the effect of Gemini surfactants1, 6-Bis (N, N-hexadecyldimethylammonium) adipate (16-6-16) on synthesis, stability and antibacterial activity of silver nanoparticles (AgNPs). The stabilizing effect of Gemini surfactant and aggregation behavior of AgNPs was evaluated by plasmonic property and morphology of the AgNPs were characterized by UV–vis spectroscopy, Dynamic Light Scattering (DLS), X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Energy dispersive X-ray analysis (EDX) techniques. Interestingly, the formation of quite mono-dispersed spherical particles was found. Apart from the stabilizing role, the Gemini surfactant has promoted the agglomeration of individual AgNPs in small assemblies whose Plasmon band features differed from those of the individual nanoparticles. The antibacterial activity of the synthesized AgNPs on Gram-negative and Gram-positive bacterium viz., E. coli and S. aureus was carried out by plate count, growth kinetics and cell viability assay. Furthermore, the mechanism of antibacterial activity of AgNPs was tested by Zeta potential and DLS analysis, to conclude that surface charge of AgNPs disrupts the cells causing cell death.  相似文献   

12.
The application of metal nanoparticles in modern society is growing, but there is insufficient data concerning their influence on reproductive processes and comparison of their biological activity. The present experiments aimed to compare the effects of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) on ovarian granulosa cell functions. AgNPs and TiO2NPs were added to culture of porcine granulosa cells at doses 0, 0.01, 0.1, 1 or 10 μg/mL. The mRNAs for proliferating cell nuclear antigen (PCNA), cyclin B1, bax and caspase 3 were quantified by RT-PCR; release of progesterone was analyzed by ELISA. It was shown that both AgNPs and TiO2NPs significantly reduced all the measured parameters. ED50 of the inhibitory influence of AgNPs on the main ovarian cell parameters was higher than ED50 of TiO2NPs. The ability of AgNPs and TiO2NPs to suppress ovarian granulosa cell functions should be taken into account by their application.  相似文献   

13.
The present study focused on the evaluation of antibacterial property of silver nanoparticles (AgNPs) synthesized using mango flower extract. The morphology of the synthesized AgNPs was observed under transmission electron microscopy and the particles have shown spherical shape in the range of 10–20 nm. X-ray powder diffraction analysis confirmed the crystalline nature of the AgNPs. The atomic percentage of the Ag element in the nanoparticles was about 7.58% which is greater than the other elements present in the sample. The AgNPs showed extensive lethal effect on both Gram-positive (Staphylococcus sp.) and Gram-negative (Klebsiella sp., Pantoea agglomerans, and Rahnella sp.) bacteria. The extensive lethal effect of AgNPs against clinically important pathogens demonstrated that the mango flower mediated AgNPs could be applied as potential antibacterial agent to control the bacterial population in the respective industries.  相似文献   

14.
In this study, phyto-synthesis of silver nanoparticles (AgNPs) was achieved using an aqueous leaf extract of Alternanthera tenella. The phytochemical screening results revealed that flavonoids are responsible for the AgNPs formation. The AgNPs were characterised using UV–visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray, transmission electron microscopy, fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction. The average size of the nanoparticles was found to be ≈48 nm. The EDX results show that strong signals were observed for the silver atoms. The strong band appearing at 1601–1595 cm?1 correspond to C–C stretching vibration from dienes in FT-IR spectrum indicating the formation of AgNPs. Human breast adenocarcinoma (MCF-7) cells treated with various concentrations of AgNPs showed a dose-dependent increase in cell inhibition. The IC50 value of the AgNPs was calculated to be 42.5 μg mL?1. The AgNPs showed a significant reduction in the migration of MCF-7 cells.  相似文献   

15.
In the current investigation, we report the biosynthesis of silver nanoparticles (Ag NPs) employing extract of Alternaria alternata, which is an eco-friendly process for the synthesis of metallic nanoparticles. Ag NPs were synthesised through the reduction of aqueous Ag+ ion using the cell extract of fungus A. alternata in the dark conditions. The synthetic process was relatively fast and Ag NPs were formed within 24 h. UV–visible spectrum of the aqueous medium containing silver ion showed a peak at 435?nm corresponding to the plasmon absorbance of Ag NPs and another peak at 280?nm refers to tyrosine amino acid. The nanoparticles were characterised by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The morphology of nanoparticles is found to be spherical mostly, with ranging size of 27–79?nm; as revealed by SEM. The FTIR spectrum analysis indicated that biomolecules were involved in the synthesis of Ag NPs. The presence of the amino groups is expected to pack differently around the Ag NPs. This in turn will influence the self-assembly of nanoparticles on substrates as well as their stability. The present study demonstrates the possible use of biologically synthesised Ag NPs in the field of agriculture, when A. alternata could be used for simple, nonhazardous and efficient synthesis of Ag NPs.  相似文献   

16.

Colloidal nanoparticles (NPs) interact with biological fluids such as human plasma to form a protein coating (corona) on the surface of NPs (NP-protein complex). However, the impact of size and type of NPs on binding of the hard corona to the surface of NPs as well as damping of their optical spectra has not been systematically explored. To elucidate the interaction between biological environment (human plasma) and NPs, a photophysical measurement was conducted to quantify the interaction of two different types of NPs (gold (Au) and silver (Ag)) with common human plasma proteins. The colloidal AuNPs and AgNPs were electrostatically stabilized and varied in diameter from 10 to 80 nm in the presence of common human plasma. The sizes of the NPs were determined using transmission electron microscopy (TEM). Optical absorption spectra were obtained for the complexes. Dynamic light scattering (DLS) measurement and zeta potential were used to characterize the sizes, hydrodynamic diameters, and surface charges of the protein-NPs complexes. Protein separation was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to isolate and identify the protein bands. The absorption of proteins to the NPs was found to be strongly dependent on the size and type of NPs. The distance between surface of NPs by absorbed protein bound to the NPs gradually increased with size of NPs, particularly for AgNPs with primary diameter of < 50 nm. The chi-square test proved that AgNPs are a good candidate in sensing the protein complex in human plasma compared with AuNPs mainly for the AgNPs with diameter sized 50 nm.

  相似文献   

17.
The biosynthesis of nanoparticles has received increasing interest because of the growing need to develop safe, cost-effective and environmentally friendly technologies for the synthesis of nano-materials. In this study, silver nanoparticles (AgNPs) were synthesized using a reduction of aqueous Ag+ ions with culture supernatant from Pleurotus ostreatus. The bioreduction of AgNPs was monitored by ultra violet-visible spectroscopy and the obtained AgNPs were characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy techniques. TEM studies showed the size of the AgNPs to be in the range of 4–15 nm. The formation of AgNPs might be an enzyme-mediated extracellular reaction process. Furthermore, the antifungal effect of AgNPs against Candida albicans as compared with commercially antifungal drugs was examined. The effect of AgNPs on dimorphic transition of C. albicans was tested. The anticancer properties of AgNPs against cells (MCF-7) were also evaluated. AgNPs caused a significant decrease in cell viability of an MCF-7 cell line (breast carcinoma). Exposure of MCF-7 cells with AgNPs resulted in a dose-dependent increase in cell growth inhibition varying from 5 to 78 % at concentrations in the range of 10–640 μg ml?1. The present study demonstrated that AgNPs have potent antifungal, antidimorphic, and anticancer activities. The current research opens a new avenue for the green synthesis of nano-materials.  相似文献   

18.
The current study reports rapid and easy method for synthesis of eco-friendly silver nanoparticles (AgNPs) using Coriandrum sativum leaves extract as a reducing and covering agent. The bio-reductive synthesis of AgNPs was monitored using a scanning double beam UV-vis spectrophotometer. Transmission electron microscopy (TEM) was used to characterize the morphology of AgNPs obtained from plant extracts. X-ray diffraction (XRD) patterns of AgNPs indicate that the structure of AgNPs is the face centered cubic structure of metallic silver. The surface morphology and topography of the AgNPs were examined by scanning electron microscopy and the energy dispersive spectrum revealed the presence of elemental silver in the sample. The silver phyto nanoparticles were collected from plant extract and tested growth potential and metabolic pattern in (Lupinus termis L.) seedlings upon exposure to different concentrations of AgNPs. The seedlings were exposed to various concentrations of (0, 0.1, 0.3 and 0.5 mg L?1) AgNPs for ten days. Significant reduction in shoot and root elongation, shoot and root fresh weights, total chlorophyll and total protein contents were observed under the higher concentrations of AgNPs. Exposure to 0.5 mg L?1 of AgNPs decreased sugar contents and caused significant foliar proline accumulation which considered as an indicator of the stressful effect of AgNPs on seedlings. AgNPs exposure resulted in a dose dependent decrease in different growth parameters and also caused metabolic disorders as evidenced by decreased carbohydrates and protein contents. Further studies needed to find out the efficacy, longevity and toxicity of AgNPs toward photosynthetic system and antioxidant parameters to improve the current investigation.  相似文献   

19.
Nowadays, the innovative study of silver nanoparticles (AgNPs) is excessive since they have incredible biomedical applications. The current study aimed to find out the potential of honey from two different floral sources (Ziziphus spina-christi and Acacia gerrardii) as biogenic mediators to synthesize AgNPs and to evaluate their antioxidant, cytotoxic and antimicrobial abilities. Biogenic AgNPs were studied for particle characterizations and the expected biomolecules helped in the reduction process of silver (Ag) ions to AgNPs. Results demonstrated different sizes (50–98 nm) and potentials −42 and −40 for AgNPs prepared using different biological materials, therefore different 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging free radicals were observed. Cytotoxic effect in a dose-dependent manner was detected against HepG2 ca cells for biogenic AgNPs resulted from cell apoptosis that detected by caspase 3/7 activation and AO/EB staining in the treated cells compared to their corresponding controls. Furthermore, biogenic AgNPs suppressed the growth of Methicillin-resistant bacteria Staphylococcus aureus (Gram-positive) besides Escherichia coli and Peseudomonas aeruginosa (Gram-negative). The IC50 of AgNPs was between 15.8 and 14.1 μg/mL and the antibacterial capability was between 22.8 ± 1.2 and 17.0 ± 0.1 mm. Bacterial membrane disturbance was evident in the current study when treated bacteria were studied by field emission scanning electron microscopy (FE-SEM) in relation to untreated controls. Overall, the present findings indicated the possibility of simple green synthesis of AgNPs using bee’s honey, which are effective agents in some biomedical applications. Detailed future work is needed to further validate the results.  相似文献   

20.
Nanomedicine concerns the use of precision-engineered nanomaterials to develop novel therapeutic and diagnostic modalities for human use. The present study demonstrates the efficacy of silver nanoparticles (AgNPs) biosynthesis from leaf extract of Vitex negundo L. as an antitumor agent using human colon cancer cell line HCT15. The AgNPs synthesis was determined by UV–visible spectrum and it was further characterized by field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) analysis. The toxicity was evaluated using changes in cell morphology, cell viability, nuclear fragmentation, cell cycle and comet assay. The percentage of cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Our results showed that biosynthesized silver nanoparticles inhibited proliferation of human colon cancer cell line HCT15 with an IC50 of 20 μg/ml at 48 h incubation. AgNPs were shown to promote apoptosis as seen in the nuclear morphological examination study using propidium iodide staining and DNA fragmentation by single cell gel electrophoresis technique. Biosynthesized AgNPs arrested HCT15 cells at G0/G1 and G2/M phases with corresponding decrease in S-phase. These results suggest that AgNPs may exert its antiproliferative effects on colon cancer cell line by suppressing its growth, arresting the G0/G1-phase, reducing DNA synthesis and inducing apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号