首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in GJA5 encoding the gap junction protein connexin40 (Cx40) have been linked to lone atrial fibrillation. Some of these mutants result in impaired gap junction function due to either abnormal connexin localization or impaired gap junction channels, which may play a role in promoting atrial fibrillation. However, the effects of the atrial fibrillation-linked Cx40 mutants on hemichannel function have not been studied. Here we investigated two atrial fibrillation-linked germline Cx40 mutants, V85I and L221I. These two mutants formed putative gap junction plaques at cell-cell interfaces, with similar gap junction coupling conductance as that of wild-type Cx40. Connexin deficient HeLa cells expressing either one of these two mutants displayed prominent propidium iodide-uptake distinct from cells expressing wild-type Cx40 or other atrial fibrillation-linked Cx40 mutants, I75F, L229M, and Q49X. Propidium iodide-uptake was sensitive to [Ca2+]o and the hemichannel blockers, carbenoxolone, flufenamic acid and mefloquine, but was not affected by the pannexin 1 channel blocking agent, probenecid, indicating that uptake is most likely mediated via connexin hemichannels. A gain-of-hemichannel function in these two atrial fibrillation-linked Cx40 mutants may provide a novel mechanism underlying the etiology of atrial fibrillation.  相似文献   

2.
《FEBS letters》2014,588(8):1238-1243
The gap junctions (GJs) formed by Cx40 and Cx43 provide a low resistance passage allowing for rapid propagation of action potentials. Sporadic somatic mutations in GJA5 (encoding Cx40) have been identified in lone atrial fibrillation (AF) patients. More recently germline autosomal dominantly inherited mutations in GJA5 have been found in early onset lone AF patients in several families over generations. Characterizations of these AF-linked Cx40 mutants in model cells and in patient tissues revealed that some of the mutants reduced GJ channel function due to an impaired trafficking or channel formation. While others showed a gain-of-function in hemichannels. These functional alterations in GJs or hemichannel may play an important role in the pathogenesis of AF in the mutant carriers.  相似文献   

3.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

4.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

5.
Atrial fibrillation (AF), the most common cardiac arrhythmia seen in general practice, can be promoted by conduction slowing. Cardiac impulse conduction depends on gap junction channels, which are composed of connexins (Cxs). While atrial Cx40 and Cx43 are equally expressed, AF studies have primarily focused on Cx40 reductions. The G60S Cx43 mutant (Cx43(G60S/+)) mouse model of Oculodentodigital dysplasia has a 60% reduction in Cx43 in the atria. Cx43(G60S/+) mice were compared with Cx40-deficient (Cx40(-/-)) mice to determine the role of Cxs in atrial tachycardia/fibrillation (AT/F). Intracardiac electrophysiological studies were done in 6-mo-old male C57BL/6 Cx43(G60S/+) mutant, littermate (Cx43(+/+)), Cx40(-/-), and C57BL/6 wild-type (WT) mice. AT/F induction used an extra stimulus during sinus rhythm, programmed electrical stimulation, or burst pacing (1-ms pulses, 50-Hz, 400-ms train) in the absence and presence of carbachol (CCh). Atrial effective refractory periods did not differ between strains. Cx43(G60S/+) mice were more susceptible to induction of sustained AT/F (duration >2 min, 9 of 12; maximum >35 min) compared with Cx43(+/+) mice (3 of 11; χ(2) = 5.24; P = 0.02). CCh enhanced sustained AT/F susceptibility in WT (from 1 of 12 without, to 7 of 10 with CCh; χ(2) = 8.98; P < 0.01) but not in Cx40(-/-) mice (1 of 13 without vs. 2 of 9 with CCh; χ(2) = 0.95; P = NS). The pattern of epicardial recordings during AT/F in Cx43(G60S/+) mice was left preceding right, with left atrial fractionated activation patterns consistent with clinical observations of AF. In conclusions, while Cx43(G60S/+) mice had severe AT/F, Cx40(-/-) mice were resistant to CCh-induced AT/F.  相似文献   

6.
The canine sterile pericarditis model is characterized by impaired conduction and atrial arrhythmia vulnerability. Electrical and structural remodeling processes caused by the inflammatory response likely promote these abnormalities. In the present study, we tested the hypothesis that altered distribution of atrial connexins is associated with markedly abnormal atrial conduction, thereby contributing to vulnerability to atrial flutter (AFL) and atrial fibrillation (AF) induction and maintenance. During rapid pacing and induced, sustained AFL or AF in five sterile pericarditis (SP) and five normal (NL) dogs, epicardial atrial electrograms were recorded simultaneously from both atria (380 electrodes) or from the right atrium (RA) and Bachmann's bundle (212 electrodes). Tissues from RA sites were subjected to immunostaining and immunoblotting to assess connexin (Cx) 40 and Cx43 distribution and expression. Transmural myocyte (alpha-actinin) and fibroblast (vimentin) volume were also assessed by immunostaining. RA pacing maps showed markedly abnormal conduction in SP, with uniform conduction in NL. Total RA activation time was significantly prolonged in SP vs. NL at 300-ms and 200-ms pacing-cycle lengths. Sustained arrhythmias were only inducible in SP [total: 4/5 (AFL: 3/5; AF: 1/5)]. In NL, Cx40, Cx43, alpha-actinin, and vimentin were homogeneously distributed transmurally. In SP, Cx40, Cx43, and alpha-actinin were absent epicardially, decreased midmyocardially, and normal endocardially. SP increased epicardial vimentin expression, suggesting fibroblast proliferation. Immunoblot analysis confirmed reduced expression of Cx40 and Cx43 in SP. The transmural gradient in the volume fraction of Cx40 and Cx43 in SP is associated with markedly abnormal atrial conduction and is likely an important factor in the vulnerability to induction and maintenance of AFL/AF in SP.  相似文献   

7.
Mutations in Connexin50 (Cx50) cause cataracts in both humans and mice. The mechanism(s) behind how mutated connexins lead to a variety of cataracts have yet to be fully elucidated. Here, we tested whether the cataract inducing Cx50-S50P mutant interacts with wild-type Connexin43 (Cx43) to form mixed channels with attenuated function. Using dual whole-cell voltage clamp, immunofluorescent microscopy and in situ dye transfer analysis we identified a unique interaction between the mutant subunit and wild-type Cx43. In paired Xenopus oocytes, co-expression of Cx50-S50P with Cx43 reduced electrical coupling ≥ 90%, without a reduction in protein expression. In transfected cells, Cx50-S50P did not target to cell-cell interfaces by itself, but co-expression of Cx50-S50P with Cx43 resulted in its localization at areas of cell-cell contact. We used Cx43 conditional knockout, Cx50 knockout and Cx50-S50P mutant mice to examine this interaction in vivo. Mice expressing both Cx43 and Cx50-S50P in the lens epithelium revealed a unique expression pattern for Cx43 and a reduction in Cx43 protein. In situ dye transfer experiments showed that the Cx50-S50P mutant, but not the Cx50, or Cx43 conditional knockout, greatly inhibited epithelial cell gap junctional communication in a manner similar to a double knockout of Cx43 and Cx50. The inhibitory affects of Cx50-S50P lead to diminished electrical coupling in vitro, as well as a discernable reduction in epithelial cell dye permeation. These data suggest that dominant inhibition of Cx43 mediated epithelial cell coupling may play a role in the lens pathophysiology caused by the Cx50-S50P mutation.  相似文献   

8.
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.  相似文献   

9.
Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed.  相似文献   

10.
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions.  相似文献   

11.
Gap junctions ensure the rapid propagation of the action potential throughout the myocardium. Three mutant forms of connexin40 (Cx40; A96S, M163V, and G38D), the primary component of the atrial gap junction channel, are associated with atrial fibrillation and retain the ability to form functional channels. We determined the biophysical properties of these mutant gap junctions in transiently transfected HeLa and N2A cells. All three mutants showed macroscopic junctional conductances over the range of 0.5 to 40 nS, and voltage dependences comparable to those of wild-type (WT) Cx40. However, the unitary conductance of G38D channels was ∼1.6-fold higher than that of WT Cx40 channels (∼220 vs. ∼135 pS), whereas the unitary conductances of the A96S and M163V mutants were similar to that of WT Cx40. Furthermore, the M163V and G38D channels exhibited approximately two- and approximately fivefold higher permeability to the anionic dye Lucifer yellow (LY) relative to K+ (LY/K+) compared with that of WT Cx40, whereas A96S LY transfer was similar to that of WT (G38D > M163V > A96S ≈ Cx40WT). In contrast, G38D channels were almost impermeable to cationic ethidium bromide (EtBr), suggesting that G38D alters channel selectivity. Conversely, A96S and M163V channels showed enhanced EtBr permeability relative to WT Cx40, with the following permeability order: M163V > A96S > Cx40WT > G38D. Altered conductive and permeability properties of mutant channels suggest an essential role for Cx40-mediated biochemical and electrical coupling in cardiac tissues. The altered properties of the three single-base substitution mutants may play a role in mechanisms of reentry arrhythmias.  相似文献   

12.
Mutations in the gene encoding connexin-43 (Cx43) cause the human development disorder known as oculodentodigital dysplasia (ODDD). In this study, ODDD-linked Cx43 N-terminal mutants formed nonfunctional gap junction-like plaques and exhibited dominant-negative effects on the coupling conductance of coexpressed endogenous Cx43 in reference cell models. Nuclear magnetic resonance (NMR) protein structure determination of an N-terminal 23-amino acid polypeptide of wild-type Cx43 revealed that it folded in to a kinked α-helical structure. This finding predicted that W4 might be critically important in intramolecular and intermolecular interactions. Thus we engineered and characterized a W4A mutant and found that this mutant formed a regular, nonkinked α-helix but did not form functional gap junctions. Furthermore, a G2V variant peptide of Cx43 showed a kinked helix that now included V2 interactions with W4, resulting in the G2V mutant forming nonfunctional gap junctions. Also predicted from the NMR structures, a G2S mutant was found to relieve these interactions and allowed the protein to form functional gap junctions. Collectively, these studies suggest that the nature of the mutation conveys loss of Cx43 function by distinctly different mechanisms that are rooted in the structure of the N-terminal region.  相似文献   

13.
Gap junctional coupling among cumulus cells is important for oogenesis since its deficiency in mice leads to impaired folliculogenesis. Multiple connexins (Cx), the subunits of gap junction channels, have been found within ovarian follicles in several species but little is known about the connexins in human follicles. The aim of this study was to determine which connexins contribute to gap junctions in human cumulus cells and to explore the possible relationship between connexin expression and pregnancy outcome from in vitro fertilization (IVF). Cumulus cells were obtained from IVF patients undergoing intra-cytoplasmic sperm injection (ICSI). Connexin expression was examined by RT-PCR and confocal microscopy. Cx43 was quantified by immunoblotting and gap junctional coupling was measured by patch-clamp electrophysiology. All but 5 of 20 connexin mRNAs were detected. Of the connexin proteins detected, Cx43 forms numerous gap junction-like plaques but Cx26, Cx30, Cx30.3, Cx32 and Cx40 appeared to be restricted to the cytoplasm. The strength of gap junctional conductance varied between patients and was significantly and positively correlated with Cx43 level, but neither was correlated with patient age. Interestingly, Cx43 level and intercellular conductance were positively correlated with embryo quality as judged by cleavage rate and morphology, and were significantly higher in patients who became pregnant than in those who did not. Thus, despite the presence of multiple connexins, Cx43 is a major contributor to gap junctions in human cumulus cells and its expression level may influence pregnancy outcome after ICSI.  相似文献   

14.

Background

Obstructive sleep apnea has been linked to the development of heart disease and arrhythmias, including atrial fibrillation. Since altered conduction through gap junction channels can contribute to the pathogenesis of such arrhythmias, we examined the abundance and distributions of the major cardiac gap junction proteins, connexin40 (Cx40) and connexin43 (Cx43) in mice treated with sleep fragmentation or intermittent hypoxia (IH) as animal models of the components of obstructive sleep apnea.

Results

Wild type C57BL/6 mice or mice lacking NADPH 2 (NOX2) oxidase activity (gp91phox(?/Y)) were exposed to room air or to SF or IH for 6 weeks. Then, the mice were sacrificed, and atria and ventricles were immediately dissected. The abundances of Cx40 or Cx43 in atria and ventricles were unaffected by SF. In contrast, immunoblots showed that the abundance of atrial Cx40 and Cx43 and ventricular Cx43 were reduced in mice exposed to IH. qRT-PCR demonstrated significant reductions of atrial Cx40 and Cx43 mRNAs. Immunofluorescence microscopy revealed that the abundance and size of gap junctions containing Cx40 or Cx43 were reduced in atria by IH treatment of mice. However, no changes of connexin abundance or gap junction size/abundance were observed in IH-treated NOX2-null mice.

Conclusions

These results demonstrate that intermittent hypoxia (but not sleep fragmentation) causes reductions and remodeling of atrial Cx40 and Cx43. These alterations may contribute to the substrate for atrial fibrillation that develops in response to obstructive sleep apnea. Moreover, these connexin changes are likely generated in response to reactive oxygen species generated by NOX2.
  相似文献   

15.
16.
Gap junction channels provide the basis for the electrical syncytial properties of the heart as a communicating electrical network. Cardiac gap junction channels are predominantly composed of connexin 40 or connexin 43. The conductance of these channels (g(j)) can be regulated pharmacologically: substances which activate protein kinase C, protein kinase A or protein kinase G may alter Cx43 gap junction conductance. However, for PKC, this seems to be subtype specific. Thus, antiarrhythmic peptides can enhance g(j) via activation of PKCepsilon, while FGF-2 reduces g(j) via PKCepsilon. Lipophilic drugs can uncouple the channels. Besides an acute regulation of g(j), the expression of the cardiac connexins can also be regulated. A decrease in Cx43 with a concomitant increase in Cx40 has been found in end-stage failing hearts, while in renovascular hypertension, an increase in Cx43 has been described. Mediators like endothelin-1, angiotensin-II, TGF-beta, VEGF, and cAMP have been shown to increase Cx43. Interestingly, endothelin-1 and angiotensin-II increased Cx43 but did not affect Cx40 expression. In contrast, in humans suffering from atrial fibrillation (AF), the content in Cx40 can be enhanced while Cx43 was unaltered, although in several other studies, other changes of the cardiac connexins were found, which might be related to the type of AF. Regarding the role of calcium, the content in both Cx40 and Cx43 was decreased in cultured neonatal rat cardiomyocytes after 24 h administration of 100 nM verapamil. Thus, gap junctional channels can be affected pharmacologically either acutely by modulating gap junction conductance or chronically by altering gap junction protein expression. Interestingly, it appears that the expression of Cx43 and Cx40 can be differentially regulated.  相似文献   

17.
Connexin43 (Cx43) forms gap junctions that couple the granulosa cells of ovarian follicles. In Cx43 knockout mice, follicle growth is restricted as a result of impaired granulosa cell proliferation. We have used these mice to examine the importance of specific Cx43 phosphorylation sites in follicle growth. Serines at residues 255, 262, 279, and 282 are MAP kinase substrates that, when phosphorylated, reduce junctional conductance. Mutant forms of Cx43 were constructed with these serines replaced with amino acids that cannot be phosphorylated. These mutants were transduced into Cx43 knockout ovarian somatic cells that were combined with wild-type oocytes and grafted into immunocompromised female mice permitting follicle growth in vivo. Despite residues 255 or 262 being mutated to prevent their being phosphorylated, recombinant ovaries constructed with these mutants were able to rescue the null phenotype, restoring complete folliculogenesis. In contrast, Cx43 with serine to alanine mutations at both residues 279 and 282 or at all four residues failed to rescue folliculogenesis; the mutant molecules were largely confined to intracellular sites, with few gap junctions. Using an in vitro proliferation assay, we confirmed a decrease in proliferation of granulosa cells expressing the double mutant construct. These results indicate that Cx43 phosphorylation by MAP kinase at serines 279 and 282 occurs in granulosa cells of early follicles and that this is involved in regulating follicle development.  相似文献   

18.
A frameshift mutation generated from a dinucleotide deletion (780-781del) in the GJA1 gene encoding Cx43 results in a frameshift yielding 46 aberrant amino acids after residue 259 and a shortened protein of 305 residues compared with the 382 in wild-type Cx43. This frameshift mutant (fs260) causes oculodentodigital dysplasia (ODDD) that includes the added condition of palmoplantar keratoderma. When expressed in a variety of cell lines, the fs260 mutant was typically localized to the endoplasmic reticulum and other intracellular compartments. The fs260 mutant, but not the G138R ODDD-linked Cx43 mutant or a Cx43 mutant truncated at residue 259 (T259), reduced the number of apparent gap junction plaques formed from endogenous Cx43 in normal rat kidney cells or keratinocytes. Interestingly, mutation of a putative FF endoplasmic reticulum retention motif encoded within the 46 aberrant amino acid domain failed to restore efficient assembly of the fs260 mutant into gap junctions. Dual whole cell patch-clamp recording revealed that fs260-expressing N2A cells exerted severely reduced electrical coupling in comparison to wild-type Cx43 or the T259 mutant, whereas single patch capacitance recordings showed that fs260 could also dominantly inhibit the function of wild-type Cx43. Co-expression studies further revealed that the dominant negative effect of fs260 on wild-type Cx43 was dose-dependent, and at a predicted 1:1 expression ratio the fs260 mutant reduced wild-type Cx43-mediated gap junctional conductance by over 60%. These results suggest that the 46 aberrant amino acid residues associated with the frameshift mutant are, at least in part, responsible for the manifestation of palmoplantar keratoderma symptoms.  相似文献   

19.
Following myocardial infarction (MI) inflammatory responses transform cardiac fibroblasts to myofibroblasts, which in vitro studies show form heterocellular gap junctions with cardiac myocytes via Connexin43 (Cx43). The ability to form heterocellular junctions in the intact heart and the impact of these junctions on propagation is unclear. We used a canine model of MI and characterized the distribution and quantity of myofibroblasts in surviving epicardial cells [epicardial border zone (EBZ)]. We found a significant increase in myofibroblasts within the EBZ and no gap junction plaques between myofibroblasts and myocytes. Because myofibroblasts produce IL-1β, which downregulates Cx43, we asked whether myofibroblast proliferation causes loss of Cx43 near myofibroblast clusters. In vitro studies showed that IL-1β caused loss of Cx43 and reduced coupling. Western blot showed a significant increase of IL-1β in the EBZ, and immunohistochemistry showed a loss of Cx43 in regions of myofibroblasts in the intact heart. Additionally, dye studies in intact heart showed no coupling between myocytes and myofibroblasts. To quantify the effect of myofibroblasts on propagation we used a two-dimensional subcellular computer model of the EBZ, which showed that heterogeneities in myofibroblast density lead to conduction abnormalities. In conclusion, an increase of myofibroblasts in the infarcted heart causes heterogeneous Cx43 levels, possibly as a result of the release of IL-1β and decreased cell-cell communication, which leads to conduction abnormalities following MI.  相似文献   

20.
Connexin 40 (Cx40) is a gap-junction protein expressed in the heart where it mediates the coordinated electrical activation of the atria and ventricular conduction tissues, facilitates cell-to-cell adhesion, and provides pathways for direct intercellular communication. Recent studies have shown that Cx40 null mice have cardiac conduction abnormalities with a very high incidence of cardiac malformations in heterozygous (18%) and homozygous (33%) animals, indicating that Cx40 plays a vital role in cardiomorphogenesis. Since several inherited cardiac conduction defects have also been found in dogs, we hypothesized that the clinical findings are genetically linked to a tissue-specific mutation or mutations in the canine Cx40 gene. We therefore screened the Cx40 gene in dogs with inherited cardiac conduction defects for mutations. In this study, we have identified three heterozygous base changes (C384G, C402T, C837T) in the dogs screened and determined them to be synonymous mutations. These mutations, however, have recently been found in an unrelated group of normal dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号