首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the “scale” of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multigene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale data set of over 22,000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multigene transfer. Among other insights, we find that 1) the observed relative frequency of HMGT increases as divergence between genomes increases, 2) HMGTs often have conserved gene functions, and 3) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.  相似文献   

2.
Li H  Zhou LS  Wang YF  Top EM  Zhang Y  Xu H 《应用生态学报》2011,22(2):526-536
可移动基因元件(mobile genetic elements,MGEs)在环境微生物群落中的水平转移是细菌基因组进化和适应特定环境压力的重要机制.在污染土壤和水体中接种携带具有降解基因MGEs的菌株后,随着MGEs的水平基因转移,可使降解基因转移至具有竞争性的土著微生物中并在其中表达,从而不必考虑供体菌在环境中是否能够长期存活.这种由可移动降解基因元件水平转移介导的生物修复为探索新的生物修复途径提供了可行性.本文重点综述了环境样品中携带降解基因MGEs的多样性及其在促进污染物降解过程中的重要作用,介绍了从环境样品中分离代谢MGEs的方法,并列举了在污染土壤、活性污泥、其他生物反应器等生态系统中MGEs水平转移的几个实例.  相似文献   

3.
We investigated the origin and diversification of the high-affinity nitrate transporter NRT2 in fungi and other eukaryotes using Bayesian and maximum parsimony methods. To assess the higher-level relationships and origins of NRT2 in eukaryotes, we analyzed 200 amino acid sequences from the Nitrate/Nitrite Porter (NNP) Family (to which NRT2 belongs), including 55 fungal, 41 viridiplantae (green plants), 11 heterokonts (stramenopiles), and 87 bacterial sequences. To assess evolution of NRT2 within fungi and other eukaryotes, we analyzed 116 amino acid sequences of NRT2 from 58 fungi, 40 viridiplantae (green plants), 1 rhodophyte, and 5 heterokonts, rooted with 12 bacterial sequences. Our results support a single origin of eukaryotic NRT2 from 1 of several clades of mostly proteobacterial NNP transporters. The phylogeny of bacterial NNP transporters does not directly correspond with bacterial taxonomy, apparently due to ancient duplications and/or horizontal gene transfer events. The distribution of NRT2 in the eukaryotes is patchy, but the NRT2 phylogeny nonetheless supports the monophyly of major groups such as viridiplantae, flowering plants, monocots, and eudicots, as well as fungi, ascomycetes, basidiomycetes, and agaric mushrooms. At least 1 secondary origin of eukaryotic NRT2 via horizontal transfer to the fungi is suggested, possibly from a heterokont donor. Our analyses also suggest that there has been a horizontal transfer of nrt2 from a basidiomycete fungus to an ascomycete fungus and reveal a duplication of nrt2 in the ectomycorrhizal mushroom genus, Hebeloma.  相似文献   

4.
Summary Plant genetic engineering has contributed substantially to the understanding of gene regulation and plant development, in the generation of transgenic organisms for widespread usage in agriculture, and has increased the potential uses of crops for industrial and pharmaceutical purposes. As the application of geneticallly engineered plants has widened, so has the need to develop methods to fine-tune control of transgene expression. The availability of a broad spectrum of promoters that differ in their ability to regulate the temporal and spatial expression patterns of the transgene can dramatically increase the successful application of transgenic technology. Indeed, a variety of promoters in necessary at all levels of genetic engineering in plants, from basic research discoveries, concepts and question to development of economically viable crops and plant commodities, to addressing legitimate concerns raised about the safety and containment of transgenic plants in the environment. This review covers the characterization and usage of a broad range of promoters employed in plant genetic engineering, including the widespread use of plant promoters with viral and plant origin that drive constitutive expression. Also covered are selected tissue-specific promoters from fruit, seed and grain, tubers, flowers, pistils, anther and pollen, roots and root nodules, and leaves and green tissue. Topics also include organellar promoters, and those found in specific cell types, as well as the development and evaluation of inducible (endogenous and exogenous origin) and synthetic plant promoter systems. Discussions on the relevance and potential pitfalls within specific applications are included.  相似文献   

5.
6.
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.  相似文献   

7.
Bacteriophages (phages) evolve rapidly by acquiring genes from other phages. This results in mosaic genomes. Here, we identify numerous genetic transfers between distantly related phages and aim at understanding their frequency, consequences, and the conditions favoring them. Gene flow tends to occur between phages that are enriched for recombinases, transposases, and nonhomologous end joining, suggesting that both homologous and illegitimate recombination contribute to gene flow. Phage family and host phyla are strong barriers to gene exchange, but phage lifestyle is not. Even if we observe four times more recent transfers between temperate phages than between other pairs, there is extensive gene flow between temperate and virulent phages, and between the latter. These predominantly involve virulent phages with large genomes previously classed as low gene flux, and lead to the preferential transfer of genes encoding functions involved in cell energetics, nucleotide metabolism, DNA packaging and injection, and virion assembly. Such exchanges may contribute to the observed twice larger genomes of virulent phages. We used genetic transfers, which occur upon coinfection of a host, to compare phage host range. We found that virulent phages have broader host ranges and can mediate genetic exchanges between narrow host range temperate phages infecting distant bacterial hosts, thus contributing to gene flow between virulent phages, as well as between temperate phages. This gene flow drastically expands the gene repertoires available for phage and bacterial evolution, including the transfer of functional innovations across taxa.  相似文献   

8.
9.
The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus‐specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.  相似文献   

10.
Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.  相似文献   

11.
水平基因转移(horizontal gene transfer, HGT)是生物体获得遗传信息的方式之一,对生物体进化起重要作用。近年来,越来越多昆虫中的水平基因转移现象被报道,如在鳞翅目(如家蚕、甜菜夜蛾、小菜蛾、斜纹夜蛾)、半翅目(如柑橘粉蚧、烟粉虱)、鞘翅目(如咖啡果小蠹、米象、光肩星天牛)、膜翅目(如金小蜂)、双翅目(如果蝇、白纹伊蚊)等昆虫中广泛存在水平转移基因,且不同的水平转移基因对昆虫的营养合成与共生、吸收与消化、毒素产生与解毒、生长和发育、体色改变等方面有着重要作用。本文结合国内外专家学者的相关报道,就HGT的研究步骤与技术方法、评判HGT发生的方法、昆虫HGT的供体与功能几个方面进行了总结和讨论,以期更加深入地了解水平基因转移现象,为探究水平基因转移的作用机制、理解昆虫的进化、遗传和行为、并将水平基因转移应用到农业生产中为农业害虫的绿色防治提供更多思路。  相似文献   

12.
Computer Analysis and Recognition of Drosophila melanogasterGene Promoters   总被引:1,自引:0,他引:1  
Levitsky  V. G.  Katokhin  A. V. 《Molecular Biology》2001,35(6):826-832
A new method for recognizing eukaryotic gene promoters was based on their partition and on analysis of correlations of dinucleotide frequencies for each individual fragment. The method was used to recognize the TATA-containing and TATA-less promoters of Drosophila melanogastergenes. The dinucleotide context was correlated with conformational and physicochemical DNA properties in promoter fragments. Mean values of several parameters proved to dramatically change on transition from the TATA box to its GC-rich flanks. In TATA-less promoters, specific properties were revealed in the DPE region. The method was employed in a promoter recognition program, which is available through Internet.  相似文献   

13.
Abstract: To understand better the mechanisms by which progesterone (PROG) promotes myelination in the PNS, cultured rat Schwann cells were transiently transfected with reporter constructs in which luciferase expression was controlled by the promoter region of either the peripheral myelin protein-22 (PMP22) or the protein zero (P0) genes. PROG stimulated the P0 promoter and promoter 1, but not promoter 2, of PMP22. The effect of PROG was specific, as estradiol and testosterone only weakly activated promoters. Dose-response curves for stimulation of both promoter constructs by PROG were biphasic. RU486, a PROG antagonist, did not abolish the effect of PROG, but stimulated promoter activities by itself. In the human carcinoma cell line T47D expressing high levels of PROG receptor, PROG did not stimulate the P0 and PMP22 promoters, whereas the promoter region of the mouse mammary tumor virus was fully activated. Thus, the activation by PROG of promoter activity of two peripheral myelin protein genes is Schwann-cell specific.  相似文献   

14.
15.
Effects of lumichrome, l-tryptophan, and curcumin on fouling organisms were examined on panels immersed in a near-shore aquatic environment. These products showed effective action in aquariums in preliminary screening tests for promoting different steps of fouling. Lumichrome showed metamorphosis-inducing activity for ascidian larvae (Halocynthia), l-tryptophan was a settlement-inducer for larvae of barnacles (Balanus), and curcumin showed attachment-promoting activity on the blue mussel (Mytilus). In order to establish that these tests are helpful in screening actual fouling or antifouling compounds, we examined the action of these three compounds in a coastal environment by following the first steps of biofouling, that is, by studying the quantity of chlorophyll, the number of bacterial cells, and the larvae settled. These experiments on the seashore indicated that these compounds did not act as promoters for the target organisms; however, they did show promoting effects on some nontarget organisms. Received September 30, 1998; accepted September 28, 1999  相似文献   

16.
通过对家蚕(Bombyxm mori)大规模EST的分析,发现家蚕的chi、gluE和fruA基因分别与微生物的相应基因存在高度的氨基酸序列同源性,且进化关系很近,但与线虫(Caenorhabditis elegans)、果蝇(Drosophila melanogaster)、按蚊(Anopheles gamble)以及家蚕近缘昆虫的类似基因之间的相似性却非常低。这表明它们可能分别与微生物的同源基因具有共同的祖先,即微生物的基因水平转移给了家蚕,进化途径不属于垂直遗传。  相似文献   

17.
Even genetically distant prokaryotes can exchange genes between them, and these horizontal gene transfer events play a central role in adaptation and evolution. While this was long thought to be restricted to prokaryotes, certain eukaryotes have acquired genes of bacterial origin. However, gene acquisitions in eukaryotes are thought to be much less important in magnitude than in prokaryotes. Here, we describe the complex evolutionary history of a bacterial catabolic gene that has been transferred repeatedly from different bacterial phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to multiple acquisitions of the gene in these filamentous eukaryotes—as many as 15 different events for 65 microeukaryotes. Furthermore, once transferred, this gene acquired introns and was found expressed in mRNA databases for most recipients. Our results show that effective inter-domain transfers and subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen at an unprecedented magnitude.  相似文献   

18.
While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast to the nucleus) on genome evolution in eukaryotes, the role of interdomain transfer from bacteria and/or archaea (i.e. prokaryotes) is less clear. Lateral gene transfers (LGTs) have been argued to be potential sources of phylogenetic information, particularly for reconstructing deep nodes that are difficult to recover with traditional phylogenetic methods. We sought to identify interdomain LGTs by using a phylogenomic pipeline that generated 13 465 single gene trees and included up to 487 eukaryotes, 303 bacteria and 118 archaea. Our goals include searching for LGTs that unite major eukaryotic clades, and describing the relative contributions of LGT and EGT across the eukaryotic tree of life. Given the difficulties in interpreting single gene trees that aim to capture the approximately 1.8 billion years of eukaryotic evolution, we focus on presence–absence data to identify interdomain transfer events. Specifically, we identify 1138 genes found only in prokaryotes and representatives of three or fewer major clades of eukaryotes (e.g. Amoebozoa, Archaeplastida, Excavata, Opisthokonta, SAR and orphan lineages). The majority of these genes have phylogenetic patterns that are consistent with recent interdomain LGTs and, with the notable exception of EGTs involving photosynthetic eukaryotes, we detect few ancient interdomain LGTs. These analyses suggest that LGTs have probably occurred throughout the history of eukaryotes, but that ancient events are not maintained unless they are associated with endosymbiotic gene transfer among photosynthetic lineages.  相似文献   

19.
《Current biology : CB》2020,30(22):4441-4453.e4
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   

20.
《Cell》2022,185(26):4921-4936.e15
  1. Download : Download high-res image (231KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号