首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prevailing wisdom of the plant mitochondrial genome is that it has very low substitution rates, thus it is generally assumed that nucleotide diversity within species will also be low. However, recent evidence suggests plant mitochondrial genes may harbor variable and sometimes high levels of within-species polymorphism, a result attributed to variance in the influence of selection. However, insufficient attention has been paid to the effect of among-gene variation in mutation rate on varying levels of polymorphism across loci. We measured levels of polymorphism in seven mitochondrial gene regions across a geographically wide sample of the plant Silene vulgaris to investigate whether individual mitochondrial genes accumulate polymorphisms equally. We found that genes vary significantly in polymorphism. Tests based on coalescence theory show that the genes vary significantly in their scaled mutation rate, which, in the absence of differences among genes in effective population size, suggests these genes vary in their underlying mutation rate. Further evidence that among-gene variance in polymorphism is due to variation in the underlying mutation rate comes from a significant positive relationship between the number of segregating sites and silent site divergence from an outgroup. Contrary to recent studies, we found unconvincing evidence of recombination in the mitochondrial genome, and generally confirm the standard model of plant mitochondria characterized by low substitution rates and no recombination. We also show no evidence of significant variation in the strength or direction of selection among genes; this result may be expected if there is no recombination. The present study provides some of the most thorough data on plant mitochondrial polymorphism, and provides compelling evidence for mutation rate variation among genes. The study also demonstrates the difficulty in establishing a null model of mitochondrial genome polymorphism, and thus the difficulty, in the absence of a comparative approach, in testing the assumption that low substitution rates in plant mitochondria lead to low polymorphism.  相似文献   

2.
Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genome-wide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life-history traits on substitution rates.  相似文献   

3.
Analyses of spontaneous mutation have shown that total genome‐wide mutation rates are quantitatively similar for most prokaryotic organisms. However, this view is mainly based on organisms that grow best around neutral pH values (6.0–8.0). In particular, the whole‐genome mutation rate has not been determined for an acidophilic organism. Here, we have determined the genome‐wide rate of spontaneous mutation in the acidophilic Acidobacterium capsulatum using a direct and unbiased method: a mutation‐accumulation experiment followed by whole‐genome sequencing. Evaluation of 69 mutation accumulation lines of Acapsulatum after an average of ~2900 cell divisions yielded a base‐substitution mutation rate of 1.22 × 10−10 per site per generation or 4 × 10−4 per genome per generation, which is significantly lower than the consensus value (2.5−4.6 × 10−3) of mesothermophilic (~15–40°C) and neutrophilic (pH 6–8) prokaryotic organisms. However, the insertion‐deletion rate (0.43 × 10−10 per site per generation) is high relative to the base‐substitution mutation rate. Organisms with a similar effective population size and a similar expected effect of genetic drift should have similar mutation rates. Because selection operates on the total mutation rate, it is suggested that the relatively high insertion‐deletion rate may be balanced by a low base‐substitution rate in Acapsulatum, with selection operating on the total mutation rate.  相似文献   

4.
Studies of molecular evolutionary rates have yielded a wide range of rate estimates for various genes and taxa. Recent studies based on population-level and pedigree data have produced remarkably high estimates of mutation rate, which strongly contrast with substitution rates inferred in phylogenetic (species-level) studies. Using Bayesian analysis with a relaxed-clock model, we estimated rates for three groups of mitochondrial data: avian protein-coding genes, primate protein-coding genes, and primate d-loop sequences. In all three cases, we found a measurable transition between the high, short-term (< 1-2 Myr) mutation rate and the low, long-term substitution rate. The relationship between the age of the calibration and the rate of change can be described by a vertically translated exponential decay curve, which may be used for correcting molecular date estimates. The phylogenetic substitution rates in mitochondria are approximately 0.5% per million years for avian protein-coding sequences and 1.5% per million years for primate protein-coding and d-loop sequences. Further analyses showed that purifying selection offers the most convincing explanation for the observed relationship between the estimated rate and the depth of the calibration. We rule out the possibility that it is a spurious result arising from sequence errors, and find it unlikely that the apparent decline in rates over time is caused by mutational saturation. Using a rate curve estimated from the d-loop data, several dates for last common ancestors were calculated: modern humans and Neandertals (354 ka; 222-705 ka), Neandertals (108 ka; 70-156 ka), and modern humans (76 ka; 47-110 ka). If the rate curve for a particular taxonomic group can be accurately estimated, it can be a useful tool for correcting divergence date estimates by taking the rate decay into account. Our results show that it is invalid to extrapolate molecular rates of change across different evolutionary timescales, which has important consequences for studies of populations, domestication, conservation genetics, and human evolution.  相似文献   

5.
The rate of molecular evolution can vary among lineages. Sources of this variation have differential effects on synonymous and nonsynonymous substitution rates. Changes in effective population size or patterns of natural selection will mainly alter nonsynonymous substitution rates. Changes in generation length or mutation rates are likely to have an impact on both synonymous and nonsynonymous substitution rates. By comparing changes in synonymous and nonsynonymous rates, the relative contributions of the driving forces of evolution can be better characterized. Here, we introduce a procedure for estimating the chronological rates of synonymous and nonsynonymous substitutions on the branches of an evolutionary tree. Because the widely used ratio of nonsynonymous and synonymous rates is not designed to detect simultaneous increases or simultaneous decreases in synonymous and nonsynonymous rates, the estimation of these rates rather than their ratio can improve characterization of the evolutionary process. With our Bayesian approach, we analyze cytochrome oxidase subunit I evolution in primates and infer that nonsynonymous rates have a greater tendency to change over time than do synonymous rates. Our analysis of these data also suggests that rates have been positively correlated.  相似文献   

6.
Theory predicts that selection should be less effective in the nonrecombining genes of Y-chromosomes, relative to the situation for genes on the other chromosomes, and this should lead to the accumulation of deleterious nonsynonymous substitutions. In addition, synonymous substitution rates may differ between X- and Y-linked genes because of the male-driven evolution effect and also because of actual differences in per-replication mutation rates between the sex chromosomes. Here, we report the first study of synonymous and nonsynonymous substitution rates on plant sex chromosomes. We sequenced two pairs of sex-linked genes, SlX1-SlY1 and SlX4-SlY4, from dioecious Silene latifolia and S. dioica, and their non-sex-linked homologues from nondioecious S. vulgaris and Lychnis flos-jovis, respectively. The rate of nonsynonymous substitutions in the SlY4 gene is significantly higher than that in the SlX4 gene. Silent substitution rates are also significantly higher in both Y-linked genes, compared with their X-linked homologues. The higher nonsynonymous substitution rate in the SlY4 gene is therefore likely to be caused by a mutation rate difference between the sex chromosomes. The difference in silent substitution rates between the SlX4 and SlY4 genes is too great to be explained solely by a higher per-generation mutation rate in males than females. It is thus probably caused by a difference in per-replication mutation rates between the sex chromosomes. This suggests that the local mutation rate can change in a relatively short evolutionary time.  相似文献   

7.
RNA viruses successfully adapt to various environments by repeatedly producing new mutants, often through generating a number of nucleotide substitutions. To estimate the degree of variation in mutation rates of RNA viruses and to understand the source of such variation, we studied the synonymous substitution rate because synonymous substitution is exempt from functional constraints at the protein level, and its rate reflects the mutation rate to a great extent. We estimated the synonymous substitution rates for a total of 49 different species of RNA viruses, and we found that the rates had tremendous variation by 5 orders of magnitude (from 1.3 x 10(-7) to 6.2 x 10(-2) /synonymous site/year). Comparing the synonymous substitution rates with the replication frequencies and replication error rates for the RNA viruses, we found that the main source of the rate variation was differences in the replication frequency because the rates of replication error were roughly constant over different RNA viruses. Moreover, we examined a relationship between viral life strategies and synonymous substitution rates to understand which viral life strategies affect replication frequencies. The results show that the variation of synonymous substitution rates has been influenced most by either the difference in the infection modes or the differences in the transmission modes. In conclusion, the variation of mutation rates for RNA viruses is caused by different replication frequencies, which are affected strongly by the infection and transmission modes.  相似文献   

8.
On the constancy of the evolutionary rate of cistrons   总被引:32,自引:0,他引:32  
Summary The variations of evolutionary rates in hemoglobins and cytochrome c among various lines of vertebrates are analysed by estimating the variance. The observed variances appear to be larger than expected purely by chance.If the amino acid substitutions in evolution are the result of random fixation of selectively neutral or nearly neutral mutations, the evolutionary rate of cistrons can be represented by the integral of the product of mutation rate and fixation probability in terms of selective values around the neutral point. This integral is called the effective neutral mutation rate.The influence of effective population number and generation time on the effective neutral mutation rate is discussed. It is concluded that the uniformity of the rate of amino acid substitutions over diverse lines is compatible with random fixation of neutral or very slightly deleterious mutations which have some chance of being selected against during the course of substitution. On the other hand, definitely advantageous mutations will introduce significant variation in the substitution rate among lines. Approximately 10% of the amino acid substitutions of average cistrons might be adaptive and create slight but significant variations in evolutionary rate among vertebrate lines, although the uniformity of evolutionary rate is still valid as a first approximation.Contribution No. 813 from the National Institute of Genetics, Mishima, Shizuokaken 411 Japan. Aided in part by a grant-in-aid from the Ministry of Education, Japan.  相似文献   

9.
Hua J  Smith DR  Borza T  Lee RW 《Protist》2012,163(1):105-115
Levels of nucleotide substitution at silent sites in organelle versus nuclear DNAs have been used to estimate relative mutation rates among these compartments and explain lineage-specific features of genome evolution. Synonymous substitution divergence values in animals suggest that the rate of mutation in the mitochondrial DNA is 10-50 times higher than that of the nuclear DNA, whereas overall data for most seed plants support relative mutation rates in mitochondrial, plastid, and nuclear DNAs of 1:3:10. Little is known about relative mutation rates in green algae, as substitution rate data is limited to only the mitochondrial and nuclear genomes of the chlorophyte Chlamydomonas. Here, we measure silent-site substitution rates in the plastid DNA of Chlamydomonas and the three genetic compartments of the streptophyte green alga Mesostigma. In contrast to the situation in animals and land plants, our results support similar relative mutation rates among the three genetic compartments of both Chlamydomonas and Mesostigma. These data are discussed in relation to published intra-species genetic diversity data for the three genetic compartments of Chlamydomonas and are ultimately used to address contemporary hypotheses on the organelle genome evolution. To guide future work, we describe evolutionary divergence data of all publically available Mesostigma viride strains and identify, for the first time, three distinct lineages of Mesostigma.  相似文献   

10.
In this study the molecular evolution of duplicated HoxA genes in zebrafish and fugu has been investigated. All 18 duplicated HoxA genes studied have a higher non-synonymous substitution rate than the corresponding genes in either bichir or paddlefish, where these genes are not duplicated. The higher rate of evolution is not due solely to a higher non-synonymous-to-synonymous rate ratio but to an increase in both the non-synonymous as well as the synonymous substitution rate. The synonymous rate increase can be explained by a change in base composition, codon usage, or mutation rate. We found no changes in nucleotide composition or codon bias. Thus, we suggest that the HoxA genes may experience an increased mutation rate following cluster duplication. In the non-Hox nuclear gene RAG1 only an increase in non-synonymous substitutions could be detected, suggesting that the increased mutation rate is specific to duplicated Hox clusters and might be related to the structural instability of Hox clusters following duplication. The divergence among paralog genes tends to be asymmetric, with one paralog diverging faster than the other. In fugu, all b-paralogs diverge faster than the a-paralogs, while in zebrafish Hoxa-13a diverges faster. This asymmetry corresponds to the asymmetry in the divergence rate of conserved non-coding sequences, i.e., putative cis-regulatory elements. These results suggest that the 5′ HoxA genes in the same cluster belong to a co-evolutionary unit in which genes have a tendency to diverge together. Reviewing Editor: Dr. Axel Meyer  相似文献   

11.
The relationship between the silent substitution rate (K s) and the GC content along the genome is a focal point of the debate about the origin of the isochore structure in vertebrates. Recent estimation of the silent substitution rate showed a positive correlation between K s and GC content, in contradiction with the predictions of both the regional mutation bias model and the selection or biased gene conversion model. The aim of this paper is to help resolve this contradiction between theoretical studies and data. We analyzed the relationship between K s and GC content under (1) uniform mutation bias, (2) a regional mutation bias, and (3) mutation bias and selection. We report that an increase in K s with GC content is expected under mutation bias because of either nonequilibrium of the isochore structure or an increasing mutation rate from AT toward GC nucleotides in GC-richer isochores. We show by simulations that CpG deamination tends to increase the mutation rate with GC content in a regional mutation bias model. We also demonstrate that the relationship between K s and GC under the selectionist or biased gene conversion model is positive under weak selection if the mutation selection equilibrium GC frequency is less than 0.5. Received: 28 March 2001 / Accepted: 16 May 2001  相似文献   

12.
A higher rate of molecular evolution in rodents than in primates at synonymous sites and, to a lesser extent, at amino acid replacement sites has been reported previously for most nuclear genes examined. Thus in these genes the average ratio of amino acid replacement to synonymous substitution rates in rodents is lower than in primates, an observation at odds with the neutral model of molecular evolution. Under Ohta's mildly deleterious model of molecular evolution, these observations are seen as the consequence of the combined effects of a shorter generation time (driving a higher mutation rate) and a larger effective population size (resulting in more effective selection against mildly deleterious mutations) in rodents. The present study reports the results of a maximum-likelihood analysis of the ratio of amino acid replacements to synonymous substitutions for genes encoded in mitochondrial DNA (mtDNA) in these two lineages. A similar pattern is observed: in rodents this ratio is significantly lower than in primates, again consistent only with the mildly deleterious model. Interestingly the lineage-specific difference is much more pronounced in mtDNA-encoded than in nuclear-encoded proteins, an observation which is shown to run counter to expectation under Ohta's model. Finally, accepting certain fossil divergence dates, the lineage-specific difference in amino acid replacement-to-synonymous substitution ratio in mtDNA can be partitioned and is found to be entirely the consequence of a higher mutation rate in rodents. This conclusion is consistent with a replication-dependent model of mutation in mtDNA. Received: 24 September 1999 / Accepted: 18 September 2000  相似文献   

13.
Germline mutation rates have been found to be higher in males than in females in many organisms, a likely consequence of cell division being more frequent in spermatogenesis than in oogenesis. If the majority of mutations are due to DNA replication error, the male-to-female mutation rate ratio (αm) is expected to be similar to the ratio of the number of germ line cell divisions in males and females (c), an assumption that can be tested with proper estimates of αm and c. αm is usually estimated by comparing substitution rates in putatively neutral sequences on the sex chromosomes. However, substantial regional variation in substitution rates across chromosomes may bias estimates of αm based on the substitution rates of short sequences. To investigate regional substitution rate variation, we estimated sequence divergence in 16 gametologous introns located on the Z and W chromosomes of five bird species of the order Galliformes. Intron ends and potentially conserved blocks were excluded to reduce the effect of using sequences subject to negative selection. We found significant substitution rate variation within Z chromosome (G15 = 37.6, p = 0.0010) as well as within W chromosome introns (G15 = 44.0, p = 0.0001). This heterogeneity also affected the estimates of αm, which varied significantly, from 1.53 to 3.51, among the introns (ANOVA: F13,14 =2.68, p = 0.04). Our results suggest the importance of using extensive data sets from several genomic regions to avoid the effects of regional mutation rate variation and to ensure accurate estimates of αm. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Mr. Martin Kreitman] Nick G.C. Smith Deceased  相似文献   

14.
Drosophila nuclear introns are commonly assumed to change according to a single rate of substitution, yet little is known about the evolution of these non-coding sequences. The hypothesis of a uniform substitution rate for introns seems to be at odds with recent findings that the nucleotide composition of introns varies at a scale unknown before, and that their base content variation is correlated with that of the adjacent exons. However, no direct attempt at comparing substitution rates in introns seems to have been addressed so far. We have studied the rate of nucleotide substitution over a region of the Xdh gene containing two adjacent short, constitutively spliced introns, in several species of Drosophila and related genera. The two introns differ significantly in base composition and substitution rate, with one intron evolving at least twice as fast as the other. In addition, the substitution pattern of the introns is positively associated with that of the surrounding coding regions, evidencing that the molecular evolution of these introns is impacted by the region in which they are embedded. The observed differences cannot be attributed to selection acting differently at the level of the secondary structure of the pre-mRNA. Rather, they are better accounted for by locally heterogeneous patterns of mutation. Received: 26 July 1999 / Accepted: 21 August 1999  相似文献   

15.
The results of a computer simulation study of the role of population size in population genetical models of molecular evolution are presented. If the mutation rate and strength of selection are held fixed and the population size increased, the eight models examined fall into three domains based on their rates of substitution. In the Ohta domain, the rate of substitution decreases with increasing population size; in the Kimura domain, the rate of substitution remains close to the mutation rate; in the Darwin domain, the rate of substitution increases without bound. In the Kimura and Darwin domains, the rate of substitution is much less sensitive to the population size than suggested by two-allele theories. Remarkably, the overdominance model converges to the neutral model with increasing N. The variation at a neutral locus linked to a selected locus is found to be insensitive to the population size for certain models of selection. A selected locus can actually cause the rate of substitution of deleterious alleles at a linked locus to increase with increasing population size. These unexpected results illustrate that intuition based on two-allele theory is often misleading.  相似文献   

16.
Models of the theory of nearly neutral mutation incorporate a continuous distribution of mutation effects in contrast to the theory of purely neutral mutation which allows no mutations with intermediate effects. Previous studies of one such model, namely the house-of-cards mutation model, assumed normal distribution of mutation effect. Here I study the house-of-cards mutation model in random-mating finite populations using the weak-mutation approximation, paying attention to the effects of the distribution of mutant effects. The average selection coefficient, substitution rate and average heterozygosity in the equilibrium and transient states were studied mainly by computer simulation. The main findings are: (i) Very rapid decrease of the substitution rate and very slow approach to equilibrium as selection becomes stronger are characteristics of assuming normal distribution of mutant effect. If the right tail of the mutation distribution decays more rapidly than that of the normal distribution, the decrease of substitution rate becomes slower and equilibrium is achieved more quickly. (ii) The dispersion index becomes smaller or larger than 1 depending on the time and the intensity of selection, (iii) LetN be the population size. When selection is strong the ratio of 4N times the substitution rate to the average heterozygosity, which is expected to be 1 under neutrality, is larger than 1 in earlier generations but becomes less than 1 in later generations. These findings show the importance of the distribution of mutant effect and time in determination of the behaviour of various statistics frequently used in the study of molecular evolution.  相似文献   

17.
共获得49个太湖新银鱼(Neosalanx taihuensis)个体的线粒体细胞色素b(Cyt b)全序列和控制区(D-loop)部分序列。所测线粒体D-loop部分序列长度变化范围为648~680bp,识别到位于前端的一个串联重复序列、一个终止相关序列(ETAS),3个中央保守区保守序列(CSB-F、CSB-E、CSB-D)及一个保守序列区保守序列(CSB-1),结构与其他鱼类的研究结果类似。太湖新银鱼线粒体Cyt b和D-loop片段的相对进化速率的比较研究结果表明,太湖新银鱼D-loop总的序列多态性位点的比例为0.83%,低于线粒体Cyt b部分总的序列多态性位点的比例(1.31%)。假设太湖新银鱼Cyt b基因平均进化速率相对值为1,贝叶斯(Bayes)MCMC模拟给出Cyt b基因的相对速率区间估计为1.000±0.131,而D-loop基因的相对速率为0.859±0.261,表明太湖新银鱼D-loop基因的进化速率低于Cyt b基因,同时,后验概率分布的变异方差也比较大。说明Cyt b基因比D-loop基因具有相对较高的进化速率,也相对更接近分子钟假设。因此,可以认为Cyt b基因比D-loop基因更适于太湖新银鱼种内及近缘种间相关分子生态及系统地理格局的研究。  相似文献   

18.
Life history and the male mutation bias   总被引:8,自引:1,他引:7  
Abstract If DNA replication is a major cause of mutation, then those life-history characters, which are expected to affect the number of male germline cell divisions, should also affect the male to female mutation bias (am). We tested this hypothesis by comparing several clades of bird species, which show variation both in suitable life-history characters (generation time as measured by age at first breeding and sexual selection as measured by frequency of extrapair paternity) and in am, which was estimated by comparing Z-linked and W-linked substitution rates in gametologous introns. am differences between clades were found to positively covary with both generation time and sexual selection, as expected if DNA replication causes mutation. The effects of extrapair paternity frequency on am suggests that increased levels of sexual selection cause higher mutation rates, which offers an interesting solution to the paradox of the loss of genetic variance associated with strong directional sexual selection. We also used relative rate tests to examine whether the observed differences in am between clades were due to differences in W-linked or Z-linked substitution rates. In one case, a significant difference in am between two clades was shown to be due to W-linked rates and not Z-linked rates, a result that suggests that mutation rates are not determined by replication alone.  相似文献   

19.
The mass-specific metabolic rate hypothesis of Gillooly and others predicts that DNA mutation and substitution rates are a function of body mass and temperature. We tested this hypothesis with sequence divergences estimated from mtDNA cytochrome b sequences of 54 taxa of cyprinid fish. Branch lengths estimated from a likelihood tree were compared with metabolic rates calculated from body mass and environmental temperatures experienced by those taxa. The problem of unknown age estimates of lineage splitting was avoided by comparing estimated amounts of metabolic activity along phyletic lines leading to pairs of modern taxa from their most recent common ancestor with sequence divergences along those same pairs of phyletic lines. There were significantly more pairs for which the phyletic line with greater genetic change also had the higher metabolic activity, when compared to the prediction of a hypothesis that body mass and temperature are not related to substitution rate.  相似文献   

20.
The reduction of mutation rates on the mammalian X chromosome relative to autosomes is most often explained in the literature as evidence of male-driven evolution. This hypothesis attributes lowered mutation rates on the X chromosome to the fact that this chromosome spends less time in the germline of males than in the germline of females. In contrast to this majority view, two articles argued that the patterns of mutation rates across chromosomes are inconsistent with male-driven evolution. One article reported a 40% reduction in synonymous substitution rates (Ks) for X-linked genes relative to autosomes in the mouse-rat lineage. The authors argued that this reduction is too dramatic to be explained by male-driven evolution and concluded that selection has systematically reduced mutation rate on the X chromosome to a level optimal for this male-hemizygous chromosome. More recently, a second article found that chromosomal mutation rates in both the human-mouse and mouse-rat lineages were so heterogeneous that the X chromosome was not an outlier. Here again, the authors argued that this is at odds with male-driven evolution and suggested that selection has modulated chromosomal mutation rates to locally optimal levels, thus extending the argument of the first mentioned article to include autosomes. Here, we reexamine these conclusions using mouse-rat and human-mouse coding-region data. We find a more modest reduction of Ks on the X chromosome, but our results contradict the finding that the X chromosome is not distinct from autosomes. Multiple statistical tests show that Ks rates on the X chromosome differ systematically from the autosomes in both lineages. We conclude that the moderate reduction of mutation rate on the X chromosome of both lineages is consistent with male-driven evolution; however, the large variance in mutation rates across chromosomes suggests that mutation rates are affected by additional factors besides male-driven evolution. Investigation of mutation rates by synteny reveals that synteny blocks, rather than entire chromosomes, might represent the unit of mutation rate variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号