首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using phase-separated droplet interface bilayers, we observe membrane binding and pore formation of a eukaryotic cytolysin, Equinatoxin II (EqtII). EqtII activity is known to depend on the presence of sphingomyelin in the target membrane and is enhanced by lipid phase separation. By imaging the ionic flux through individual pores in vitro, we observe that EqtII pores form predominantly within the liquid-disordered phase. We observe preferential binding of labeled EqtII at liquid-ordered/liquid-disordered domain boundaries before it accumulates in the liquid-disordered phase.  相似文献   

2.
Equinatoxin II (EqtII) belongs to a unique family of 20-kDa pore-forming toxins from sea anemones. These toxins preferentially bind to membranes containing sphingomyelin and create cation-selective pores by oligomerization of 3-4 monomers. In this work we have studied the binding of EqtII to lipid membranes by the use of lipid monolayers and surface plasmon resonance (SPR). The binding is a two-step process, separately mediated by two regions of the molecule. An exposed aromatic cluster involving tryptophans 112 and 116 mediates the initial attachment that is prerequisite for the next step. Steric shielding of the aromatic cluster or mutation of Trp-112 and -116 to phenylalanine significantly reduces the toxin-lipid interaction. The second step is promoted by the N-terminal amphiphilic helix, which translocates into the lipid phase. The two steps were distinguished by the use of a double cysteine mutant having the N-terminal helix fixed to the protein core by a disulfide bond. The kinetics of membrane binding derived from the SPR experiments could be fitted to a two-stage binding model. Finally, by using membrane-embedded quenchers, we showed that EqtII does not insert deeply in the membrane. The first step of the EqtII binding is reminiscent of the binding of the evolutionarily distant cholesterol-dependant cytolysins, which share a similar structural motif in the membrane attachment domain.  相似文献   

3.
Equinatoxin II is a pore-forming protein of the actinoporin family. After membrane binding, it inserts its N-terminal α-helix and forms a protein/lipid pore. Equinatoxin II activity depends on the presence of sphingomyelin in the target membrane; however, the role of this specificity is unknown. On the other hand, sphingomyelin is considered an essential ingredient of lipid rafts and promotes liquid-ordered/liquid-disordered phase separation in model membranes that mimic raft composition. Here, we used giant unilamellar vesicles to simultaneously investigate the effect of sphingomyelin and phase separation on the membrane binding and permeabilizing activity of Equinatoxin II. Our results show that Equinatoxin II binds preferentially to the liquid-ordered phase over the liquid-disordered one and that it tends to concentrate at domain interfaces. In addition, sphingomyelin strongly enhances membrane binding of the toxin but is not sufficient for membrane permeabilization. Under the same experimental conditions, Equinatoxin II formed pores in giant unilamellar vesicles containing sphingomyelin only when liquid-ordered and -disordered phases coexisted. Our observations demonstrate the importance of phase boundaries for Equinatoxin II activity and suggest a double role of sphingomyelin as a specific receptor for the toxin and as a promoter of the membrane organization necessary for Equinatoxin II action.  相似文献   

4.
α-Pore-forming toxins (α-PFTs) are ubiquitous defense tools that kill cells by opening pores in the target cell membrane. Despite their relevance in host/pathogen interactions, very little is known about the pore stoichiometry and assembly pathway leading to membrane permeabilization. Equinatoxin II (EqtII) is a model α-PFT from sea anemone that oligomerizes and forms pores in sphingomyelin-containing membranes. Here, we determined the spatiotemporal organization of EqtII in living cells by single molecule imaging. Surprisingly, we found that on the cell surface EqtII did not organize into a unique oligomeric form. Instead, it existed as a mixture of oligomeric species mostly including monomers, dimers, tetramers, and hexamers. Mathematical modeling based on our data supported a new model in which toxin clustering happened in seconds and proceeded via condensation of EqtII dimer units formed upon monomer association. Furthermore, altering the pathway of EqtII assembly strongly affected its toxic activity, which highlights the relevance of the assembly mechanism on toxicity.  相似文献   

5.
Equinatoxin II (EqtII), a protein toxin from the sea anemone Actinia equina, readily creates pores in sphingomyelin-containing lipid membranes. The perturbation by EqtII of model lipid membranes composed of dimyristoylphosphatidycholine and sphingomyelin (10 mol %) was investigated using wideline phosphorus-31 and deuterium NMR. The preferential interaction between EqtII (0.1 and 0.4 mol %) and the individual bilayer lipids was studied by (31)P magic angle spinning NMR, and toxin-induced changes in bilayer morphology were examined by freeze-fracture electron microscopy. Both NMR and EM showed the formation of an additional lipid phase in sphingomyelin-containing mixed lipid multilamellar suspensions with 0.4 mol % EqtII. The new toxin-induced phase consisted of small unilamellar vesicles 20-40 nm in diameter. Deuterium NMR showed that the new lipid phase contains both dimyristoylphosphatidycholine and sphingomyelin. Solid-state (31)P NMR showed an increase in spin-lattice and a decrease in spin-spin relaxation times in mixed-lipid model membranes in the presence of EqtII, consistent with an increase in the intensity of low frequency motions. The (2)H and (31)P spectral intensity distributions confirmed a change in lipid mobility and showed the creation of an isotropic lipid phase, which was identified as the small vesicle structures visible by electron microscopy in the EqtII-lipid suspensions. The toxin appears to enhance slow motions in the membrane lipids and destabilize the membrane. This effect was greatly enhanced in sphingomyelin-containing mixed lipid membranes compared with pure phosphatidylcholine bilayers, suggesting a preferential interaction between the toxin and bilayer sphingomyelin.  相似文献   

6.
Liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence has been suggested to partition the plasma membrane of biological cells into lateral compartments, allowing for enrichment or depletion of functionally relevant molecules. This dynamic partitioning might be involved in fine-tuning cellular signaling fidelity through coupling to the plasma membrane protein and lipid composition. In earlier work, giant plasma membrane vesicles, obtained by chemically induced blebbing from cultured cells, were observed to reversibly phase segregate at temperatures significantly below 37 °C. In this contribution, we compare the temperature dependence of fluid phase segregation in HeLa and rat basophilic leukemia (RBL) cells. We find an essentially monotonic temperature dependence of the number of phase-separated vesicles in both cell types. We also observe a strikingly broad distribution of phase transition temperatures in both cell types. The binding of peripheral proteins, such as cholera toxin subunit B (CTB), as well as Annexin V, is observed to modulate phase transition temperatures, indicating that peripheral protein binding may be a regulator for lateral heterogeneity in vivo. The partitioning of numerous signal protein anchors and full length proteins is investigated. We find Lo phase partitioning for several proteins assumed in the literature to be membrane raft associated, but observe deviations from this expectation for other proteins, including caveolin-1.  相似文献   

7.
Cobra CTX A3, the major cardiotoxin (CTX) from Naja atra, is a cytotoxic, basic β-sheet polypeptide that is known to induce a transient membrane leakage of cardiomyocytes through a sulfatide-dependent CTX membrane pore formation and internalization mechanism. The molecular specificity of CTX A3-sulfatide interaction at atomic levels has also been shown by both nuclear magnetic resonance (NMR) and X-ray diffraction techniques to reveal a role of CTX-induced sulfatide conformational changes for CTX A3 binding and dimer formation. In this study, we investigate the role of sulfatide lipid domains in CTX pore formation by various biophysical methods, including fluorescence imaging and atomic force microscopy, and suggest an important role of liquid-disordered (ld) and solid-ordered (so) phase boundary in lipid domains to facilitate the process. Fluorescence spectroscopic studies on the kinetics of membrane leakage and CTX oligomerization further reveal that, although most CTXs can oligomerize on membranes, only a small fraction of CTXs oligomerizations form leakage pores. We therefore suggest that CTX binding at the boundary between the so and so/ld phase coexistence sulfatide lipid domains could form effective pores to significantly enhance the CTX-induced membrane leakage of sulfatide-containing phosphatidylcholine vesicles. The model is consistent with our earlier observations that CTX may penetrate and lyse the bilayers into small aggregates at a lipid/protein molar ratio of about 20 in the ripple P(β)' phase of phosphatidylcholine bilayers and suggest a novel mechanism for the synergistic action of cobra secretary phospholipase A2 and CTXs.  相似文献   

8.
Equinatoxin II (EqtII) is a protein toxin that lyses both red blood cells and artificial membranes. Lysis is dependent on the lipid composition, with small unilamellar vesicles (SUVs) of dimyristoylphosphatidylcholine (DMPC) and sphingomyelin (SM) (1:1 molar) being lysed more readily than those of phosphatidylcholine alone. Removing the N-terminus of EqtII prevents pore formation, but does not prevent membrane binding. A peptide corresponding to residues 1–32 of EqtII was found using NMR to adopt a helical structure in micelles. To further understand the structural changes that accompany membrane insertion, synchrotron radiation circular dichroism spectra of the N-terminal peptide in a range of model membranes have been analysed. The peptide structure was examined in water, dodecylphosphocholine (DPC) and DPC:SM (5:1) micelles, and SUVs composed of dioleoylphosphatidylcholine (DOPC) or DMPC, together with SM and cholesterol (Chol). The peptide adopted different conformations in different lipids. Although the presence of SM did not affect the conformation in micelles, inclusion of SM in the bilayer-forming lipid increased the helicity of the peptide. This effect was abolished when Chol was added in DOPC but not in DMPC, which may relate to liquid ordered versus disordered phase properties of the lipid. SM may act as a promoter of membrane organisation necessary for membrane lysis by EqtII.  相似文献   

9.
Actinoporin equinatoxin II (EqtII) is an archetypal example of α-helical pore-forming toxins that porate cellular membranes by the use of α-helices. Previous studies proposed several steps in the pore formation: binding of monomeric protein onto the membrane, followed by oligomerization and insertion of the N-terminal α-helix into the lipid bilayer. We studied these separate steps with an EqtII triple cysteine mutant. The mutant was engineered to monitor the insertion of the N terminus into the lipid bilayer by labeling Cys-18 with a fluorescence probe and at the same time to control the flexibility of the N-terminal region by the disulfide bond formed between cysteines introduced at positions 8 and 69. The insertion of the N terminus into the membrane proceeded shortly after the toxin binding and was followed by oligomerization. The oxidized, non-lytic, form of the mutant was still able to bind to membranes and oligomerize at the same level as the wild-type or the reduced form. However, the kinetics of the N-terminal helix insertion, the release of calcein from erythrocyte ghosts, and hemolysis of erythrocytes was much slower when membrane-bound oxidized mutant was reduced by the addition of the reductant. Results show that the N-terminal region needs to be inserted in the lipid membrane before the oligomerization into the final pore and imply that there is no need for a stable prepore formation. This is different from β-pore-forming toxins that often form β-barrel pores via a stable prepore complex.  相似文献   

10.
Sphingomyelin (SM) is abundant in the outer leaflet of the cell plasma membrane, with the ability to concentrate in so-called lipid rafts. These specialized cholesterol-rich microdomains not only are associated with many physiological processes but also are exploited as cell entry points by pathogens and protein toxins. SM binding is thus a widespread and important biochemical function, and here we reveal the molecular basis of SM recognition by the membrane-binding eukaryotic cytolysin equinatoxin II (EqtII). The presence of SM in membranes drastically improves the binding and permeabilizing activity of EqtII. Direct binding assays showed that EqtII specifically binds SM, but not other lipids and, curiously, not even phosphatidylcholine, which presents the same phosphorylcholine headgroup. Analysis of the EqtII interfacial binding site predicts that electrostatic interactions do not play an important role in the membrane interaction and that the two most important residues for sphingomyelin recognition are Trp(112) and Tyr(113) exposed on a large loop. Experiments using site-directed mutagenesis, surface plasmon resonance, lipid monolayer, and liposome permeabilization assays clearly showed that the discrimination between sphingomyelin and phosphatidylcholine occurs in the region directly below the phosphorylcholine headgroup. Because the characteristic features of SM chemistry lie in this subinterfacial region, the recognition mechanism may be generic for all SM-specific proteins.  相似文献   

11.
Plasmodium falciparum develops within the mature RBCs (red blood cells) of its human host in a PV (parasitophorous vacuole) that separates the host cell cytoplasm from the parasite surface. The pore-forming toxin, SLO (streptolysin O), binds to cholesterol-containing membranes and can be used to selectively permeabilize the host cell membrane while leaving the PV membrane intact. We found that in mixtures of infected and uninfected RBCs, SLO preferentially lyses uninfected RBCs rather than infected RBCs, presumably because of differences in cholesterol content of the limiting membrane. This provides a means of generating pure preparations of viable ring stage infected RBCs. As an alternative permeabilizing agent we have characterized EqtII (equinatoxin II), a eukaryotic pore-forming toxin that binds preferentially to sphingomyelin-containing membranes. EqtII lyses the limiting membrane of infected and uninfected RBCs with similar efficiency but does not disrupt the PV membrane. It generates pores of up to 100 nm, which allow entry of antibodies for immunofluorescence and immunogold labelling. The present study provides novel tools for the analysis of this important human pathogen and highlights differences between Plasmodium-infected and uninfected RBCs.  相似文献   

12.
Wan C  Kiessling V  Cafiso DS  Tamm LK 《Biochemistry》2011,50(13):2478-2485
Synaptotagmin I is the calcium sensor in synchronous neurotransmitter release caused by fusion of synaptic vesicles with the presynaptic membrane in neurons. Synaptotagmin I interacts with acidic phospholipids, but also with soluble N-ethylmaleimide-sensitive factor attachment receptors (SNAREs), at various stages in presynaptic membrane fusion. Because SNAREs can be organized into small cholesterol-dependent clusters in membranes, it is important to determine whether the C2 domains of synaptotagmin target membrane domains with different cholesterol contents. To address this question, we used a previously developed asymmetric two-phase lipid bilayer system to investigate the membrane binding and lipid phase targeting of soluble C2A and C2AB domains of synaptotagmin. We found that both domains target more disordered cholesterol-poor domains better than highly ordered cholesterol-rich domains. The selectivity is greatest (~3-fold) for C2A binding to disordered domains that are formed in the presence of 5 mol % PIP(2) and 15 mol % PS. It is smallest (~1.4-fold) for C2AB binding to disordered domains that are formed in the presence of 40 mol % PS. In the course of these experiments, we also found that C2A domains in the presence of Ca(2+) and C2AB domains in the absence of Ca(2+) are quite reliable reporters of the acidic lipid distribution between ordered and disordered lipid phases. Accordingly, PS prefers the liquid-disordered phase over the liquid-ordered phase by ~2-fold, but PIP(2) has an up to 3-fold preference for the liquid-disordered phase.  相似文献   

13.
In a combined chemical biological and biophysical approach, we studied the partitioning of differently fluorescent-labeled palmitoyl and/or farnesyl lipidated peptides, which represent membrane recognition model systems, as well as the full lipidated N-Ras protein into various model membrane systems including canonical model raft mixtures. To this end, two-photon fluorescence microscopy on giant unilamellar vesicles, complemented by tapping-mode atomic force microscopy (AFM) measurements, was carried out. The measurements were performed over a wide temperature range, ranging from 30 to 80 °C to cover different lipid phase states (solid-ordered (gel), fluid/gel, liquid-ordered/liquid-disordered, all-fluid). The results provide direct evidence that partitioning of the lipidated peptides and N-Ras occurs preferentially into liquid-disordered lipid domains, which is also reflected in a faster kinetics of incorporation. The phase sequence of preferential binding of N-Ras to mixed-domain lipid vesicles is liquid-disordered > liquid-ordered ? solid-ordered. Intriguingly, we detect - using the better spatial resolution of AFM - also a large proportion of the lipidated protein located at the liquid-disordered/liquid-ordered phase boundary, thus leading to a favorable decrease in line tension that is associated with the rim of neighboring domains. In an all-liquid-ordered, cholesterol-rich phase, phase separation can be induced by an effective lipid sorting mechanism owing to the high affinity of the lipidated peptides and proteins to a fluid-like lipid environment. At low temperatures, where the overall acyl chain order parameter of the lipid bilayer has markedly increased, such an efficient lipid sorting mechanism is energetically too costly and self-association of the peptide into small clusters takes place. These data reveal the interesting ability of the lipidated peptides and proteins to induce formation of fluid microdomains at physiologically relevant high cholesterol concentrations. Furthermore, our results reveal self-association of the N-Ras protein at the domain boundaries which may serve as an important vehicle for association processes and nanoclustering, which has also been observed in in vivo studies.  相似文献   

14.
We have measured the rates of insertion into, desorption from, and spontaneous interlayer translocation (flip-flop) in liquid-disordered and liquid-ordered phase lipid bilayer membranes, of the fluorescent phospholipid derivative NBD-dimyristoylphosphatidyl ethanolamine. This study made use of a recently described method that exploits a detailed knowledge of the binding kinetics of an amphiphile to bovine serum albumin, to recover the insertion and desorption rate constants when the albumin-bound amphiphile is transferred through the aqueous phase to the membrane and vice versa. The lipid bilayers, studied as large unilamellar vesicles, were prepared from pure 1-palmitoyl-2-oleoylphosphatidylcholine in the liquid-disordered phase; and from two cholesterol-containing binary lipid mixtures, 1-palmitoyl-2-oleoylphosphatidylcholine and cholesterol (molar ratio of 1:1), and egg sphingomyelin and cholesterol (molar ratio of 6:4), both in the liquid-ordered phase. Insertion, desorption, and translocation rate constants and equilibrium constants for association of the amphiphile monomer with the lipid bilayers were directly measured between 15 degrees and 35 degrees C, and the standard free energies, enthalpies, and entropies, as well as the activation energies for these processes, were derived from this data. The equilibrium partition coefficients for partitioning of the amphiphile between the aqueous phase and the different membrane phases were also derived, and permitted the estimation of hypothetical partition coefficients and the respective energetic parameters for partitioning between the different lipid phases if these were to coexist in the same membrane.  相似文献   

15.
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (Ld) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (Lo) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.  相似文献   

16.
Equinatoxin II (EqtII) is a pore-forming protein from Actinia equina that lyses red blood cell and model membranes. Lysis is dependent on the presence of sphingomyelin (SM) and is greatest for vesicles composed of equimolar SM and phosphatidylcholine (PC). Since SM and cholesterol (Chol) interact strongly, forming domains or “rafts” in PC membranes, 31P and 2H solid-state NMR were used to investigate changes in the lipid order and bilayer morphology of multilamellar vesicles comprised of different ratios of dimyristoylphosphatidylcholine (DMPC), SM and Chol following addition of EqtII. The toxin affects the phase transition temperature of the lipid acyl chains, causes formation of small vesicle type structures with increasing temperature, and changes the T2 relaxation time of the phospholipid headgroup, with a tendency to order the liquid disordered phases and disorder the more ordered lipid phases. The solid-state NMR results indicate that Chol stabilizes the DMPC bilayer in the presence of EqtII but leads to greater disruption when SM is in the bilayer. This supports the proposal that EqtII is more lytic when both SM and Chol are present as a consequence of the formation of domain boundaries between liquid ordered and disordered phases in lipid bilayers leading to membrane disruption.  相似文献   

17.
Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.  相似文献   

18.
Although sphingomyelin is an important cellular lipid, its subcellular distribution is not precisely known. Here we use a sea anemone cytolysin, equinatoxin II (EqtII), which specifically binds sphingomyelin, as a new marker to detect cellular sphingomyelin. A purified fusion protein composed of EqtII and green fluorescent protein (EqtII-GFP) binds to the SM rich apical membrane of Madin-Darby canine kidney (MDCK) II cells when added exogenously, but not to the SM-free basolateral membrane. When expressed intracellularly within MDCK II cells, EqtII-GFP colocalizes with markers for Golgi apparatus and not with those for nucleus, mitochondria, endoplasmic reticulum or plasma membrane. Colocalization with the Golgi apparatus was confirmed by also using NIH 3T3 fibroblasts. Moreover, EqtII-GFP was enriched in cis-Golgi compartments isolated by gradient ultracentrifugation. The data reveal that EqtII-GFP is a sensitive probe for membrane sphingomyelin, which provides new information on cytosolic exposure, essential to understand its diverse physiological roles.  相似文献   

19.
Cholesterol is important for the formation of microdomains in supported lipid bilayers and is enriched in the liquid-ordered phase. To understand the interactions leading to this enrichment, we developed an AFM-based single-lipid-extraction (SLX) approach that enables us to determine the anchoring strength of cholesterol in the two phases of a phase-separated lipid membrane. As expected, the forces necessary for extracting a single cholesterol molecule from liquid-ordered phases are significantly higher than for extracting it from the liquid-disordered phases. Interestingly, application of the Bell model shows two energy barriers that correlate with the head and full length of the cholesterol molecule. The resulting lifetimes for complete extraction are 90 s and 11 s in the liquid-ordered and liquid-disordered phases, respectively. Molecular dynamics simulations of the very same experiment show similar force profiles and indicate that the stabilization of cholesterol in the liquid-ordered phase is mainly due to nonpolar contacts.  相似文献   

20.
The rare, broadly neutralizing antibodies, 4E10 and 2F5, that target the HIV-1 membrane proximal external region also associate with HIV-1 membrane lipids as part of a required first-step in HIV-1 neutralization. HIV-1 virions have high concentration of cholesterol and sphingomyelin, which are able to organize into liquid-ordered domains (i.e., lipid rafts), and could influence the interaction of neutralizing antibodies with epitopes proximal to the membrane. The objective of this research is to understand how these lipid domains contribute to 2F5/4E10 membrane interactions and to antigen presentation in liposomal form of HIV-1 vaccines. To this end we have engineered biomimetic supported lipid bilayers and are able to use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody–membrane interactions. Our results demonstrate that 2F5/4E10 do not interact with highly ordered gel and liquid-ordered domains and exclusively bind to a liquid-disordered lipid phase. This suggests that vaccine liposomes that contain key viral membrane components, such as high cholesterol content, may not be advantageous for 2F5/4E10 vaccine strategies. Rather, vaccine liposomes that primarily contain a liquid-disordered phase may be more likely to elicit production of lipid reactive, 2F5- and 4E10-like antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号