首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

Ph-3 is the first cloned tomato gene for resistance to late blight and encodes a CC-NBS-LRR protein.

Abstract

Late blight, caused by Phytophthora infestans, is one of the most destructive diseases in tomato. The resistance (R) gene Ph-3, derived from Solanum pimpinellifolium L3708, provides resistance to multiple P. infestans isolates and has been widely used in tomato breeding programmes. In our previous study, Ph-3 was mapped into a region harbouring R gene analogues (RGA) at the distal part of long arm of chromosome 9. To further narrow down the Ph-3 interval, more recombinants were identified using the flanking markers G2-4 and M8-2, which defined the Ph-3 gene to a 26 kb region according to the Heinz1706 reference genome. To clone the Ph-3 gene, a bacterial artificial chromosome (BAC) library was constructed using L3708 and one BAC clone B25E21 containing the Ph-3 region was identified. The sequence of the BAC clone B25E21 showed that only one RGA was present in the target region. A subsequent complementation analysis demonstrated that this RGA, encoding a CC-NBS-LRR protein, was able to complement the susceptible phenotype in cultivar Moneymaker. Thus this RGA was considered the Ph-3 gene. The predicted Ph-3 protein shares high amino acid identity with the chromosome-9-derived potato resistance proteins against P. infestans (Rpi proteins).  相似文献   

2.
The need for a new analytical approach was encountered in the course of characterizing newly developed tomato lines resistant to late blight. Late blight resistant tomato lines were created in independent breeding programs using the accession Solanum pimpinellifolium L. (formerly Lycopersicon pimpinellifolium (L.) Miller) L3708 as the source of the resistance. However, initial field observation suggested that the late blight resistance in the lines produced by two independent breeding programs differed. Possible causes included a partial transfer of the late blight resistance derived from S. pimpinellifolium L3708 or the possibility of race specificity of this resistance. A crucial issue was determining the most appropriate and robust analytical method to use with data from laboratory analyses of the responses of nine tomato lines against five P. infestans isolates. Prior analysis by standard ANOVA revealed significant differences across tomato lines but could not determine whether the disease responses in the CLN-R lines were different from those of the heterozygous F1 hybrids, created by crossing susceptible tomatoes with the fixed CU-R lines. A different analytical method was needed. Therefore, sporangia numbers/leaflet and diseased area data were analyzed using a half-normal probability plot and regression analysis. The results of this analysis show its utility for genetic or pathology studies. Considering only populations of the uniform tomato lines, this method confirms the results obtained by using a standard ANOVA, but provides a clearer demonstration of the distributions of the individuals within the populations and how this distribution impacts variance and the difference among the populations. This method also allows a joint analysis of the uniform lines with an additional population that is less uniform, because it is segregating. Such an analysis would be invalid using a standard ANOVA. The results of this joint analysis determined that the additional population was divergent from the fixed CU-R lines, and, against some isolates, against the CLN-R lines as well. Half-normal probability plot analysis method would be applicable more broadly beyond analysis of disease resistance data. It could be useful for data from populations that are not normally distributed, for traits which are affected by epistatic gene action, and could be useful for selection of extremes.  相似文献   

3.
Late blight, caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary, is a devastating disease for tomato and potato crops. In the past decades, many late blight resistance (R) genes have been characterized in potato. In contrast, less work has been conducted on tomato. The Ph-3 gene from Solanum pimpinellifolium was introgressed into cultivated tomatoes and conferred broad-spectrum resistance to P. infestans. It was previously assigned to the long arm of chromosome 9. In this study, a high-resolution genetic map covering the Ph-3 locus was constructed using an F2 population of a cross between Solanum lycopersicum CLN2037B (containing Ph-3) and S. lycopersicum LA4084. Ph-3 was mapped in a 0.5 cM interval between two markers, Indel_3 and P55. Eight putative genes were found in the corresponding 74 kb region of the tomato Heinz1706 reference genome. Four of these genes are resistance gene analogs (RGAs) with a typical nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 domain. Each RGA showed high homology to the late blight R gene Rpi-vnt1.1 from Solanum venturii. Transient gene silencing indicated that a member of this RGA family is required for Ph-3-mediated resistance to late blight in tomato. Furthermore, this RGA family was also found in the potato genome, but the number of the RGAs was higher than in tomato.  相似文献   

4.
An earlier study identified quantitative trait loci (QTLs) lb4, lb5b, and lb11b for quantitative resistance to Phytophthora infestans (late blight) in a backcross population derived from crossing susceptible cultivated tomato (Lycopersicon esculentum) with resistant L. hirsutum. The QTLs were located in intervals spanning 28–47 cM. Subsequently, near-isogenic lines (NILs) were developed for lb4, lb5b, and lb11b by marker-assisted backcrossing to L. esculentum. Sub-NILs containing overlapping L. hirsutum segments across each QTL region were selected and used to validate the QTL effects, fine-map QTLs, and evaluate potential linkage drag between resistance QTLs and QTLs for horticultural traits. The NILs and sub-NILs were evaluated for disease resistance and eight horticultural traits at three field locations. Resistance QTLs were detected in all three sets of NIL lines, confirming the BC1 mapping results. Lb4 mapped near TG609, and between TG182 and CT194, on chromosome 4, a 6.9-cM interval; lb5b mapped to an 8.8-cM interval between TG69a and TG413 on chromosome 5, with the most likely position near TG23; and lb11b mapped to a 15.1-cM interval on chromosome 11 between TG194 and TG400, with the peak centered between CT182 and TG147. Most QTLs for horticultural traits were identified in intervals adjacent to those containing the late blight resistance QTLs. Fine mapping of these QTLs permits the use of marker-assisted selection for the precise introgression of L. hirsutum segments containing late blight resistance alleles separately from those containing deleterious alleles at horticulturally important QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D.B. Neale  相似文献   

5.
Prior to 2007, late blight was not reported as a serious threat to tomato cultivation in India although the disease has been known on potato since 1953. During the July–December cropping season of 2009 and 2010, severe late blight epidemics were observed in Karnataka state of India, causing crop losses up to 100%. Nineteen Phytophthora isolates, recovered from late blight affected tomato tissues from different localities in Karnataka state between 2009 and 2010, were identified as Phytophthora infestans based on morphology, a similarity search of ITS sequences at GenBank and species‐specific PCR using PINF/ITS5 primer pair. The isolates were further assessed for metalaxyl sensitivity, mating type, mitochondrial DNA (mtDNA) haplotype, DNA fingerprinting patterns based on simple sequence repeats (SSR) and RFLPs using the RG57 probe and aggressiveness on tomato. All isolates were metalaxyl resistant, A2 mating type, mtDNA haplotype Ia and had identical SSR and RG57 fingerprints and highly aggressive on tomato. The phenotypic and genotypic characters of isolates examined in this study were found to be similar to that of 13_A2 genotype of P. infestans population reported in Europe. Thus, appearance of new population similar to 13_A2 genotype was responsible for severe late blight epidemics on tomato in South‐West India.  相似文献   

6.
Phytophthora infestans, the causal agent of late blight, remains the main threat to potato production worldwide. Screening of 19 accessions of Solanum dulcamara with P. infestans isolate Ipo82001 in detached leaf assays revealed strong resistance in an individual belonging to accession A54750069-1. This plant was crossed with a susceptible genotype, and an F1 population consisting of 63 individuals was obtained. This population segregated for resistance in 1:1 ratio, both in detached leaf assays and in an open-field experiment. Presence of the formerly mapped Rpi-dlc1 gene as the cause of the observed segregating resistance could be excluded. Subsequently, AFLP analyses using 128 primer combinations enabled identification of five markers linked to a novel resistance gene named Rpi-dlc2. AFLP markers did not show sequence similarity to the tomato and potato genomes, hampering comparative genetic positioning of the gene. For this reason we used next-generation mapping (NGM), an approach that exploits direct sequencing of DNA (in our case: cDNA) pools from bulked segregants to calculate the genetic distance between SNPs and the locus of interest. Plotting of these genetic distances on the tomato and potato genetic map and subsequent PCR-based marker analysis positioned the gene on chromosome 10, in a region overlapping with the Rpi-ber/ber1 and -ber2 loci from S. berthaultii. Pyramiding of Rpi-dlc2 and Rpi-dlc1 significantly increased resistance to P. infestans, compared with individuals containing only one of the genes, showing the usefulness of this strategy to enhance resistance against Phytophthora.  相似文献   

7.
Migrations or introduction of new genotypes of Phytophthora infestans to a specific region imposes a different perspective for potato production. During 2009–2010, a late blight epidemic affected the Northeastern United States, which quickly spread through several states. The epidemic was characterized by the appearance of a new genotype of P. infestans designated US‐22, which was isolated from tomato and potato. Potato tubers are an essential component of late blight epidemics where the pathogen cannot overwinter on Solanaceous plants. Six potato cultivars were inoculated with 12 isolates of P. infestans (five different genotypes), including isolates of the genotype US‐22. Tuber blight development was characterized in terms of tissue darkening expressed as area under the disease progress curve values and lenticel infection. The responses indicated that US‐8 was more aggressive than US‐22, but US‐22 isolates obtained from potato were more aggressive on potato than those acquired from tomato. Tuber periderm responses to infection were limited, yet US‐8 isolates infected the periderm more often than US‐22 isolates. There were significant differences among the cultivars tested but cv. Jacqueline Lee was the most resistant overall. Although isolates of P. infestans genotype US‐22 were less aggressive in comparison with US‐8 isolates, US‐22 isolates still infected potato tubers and were as aggressive us US‐8 isolates on some cultivars. Management of late blight caused by isolates of US‐22 through host resistance may be feasible but imposes a different set of criteria for consideration from those that US‐8 imposed.  相似文献   

8.
Late blight (LB), caused by the oomycete Phytophthora infestans, and early blight (EB), caused by the fungi Alternaria solani and A. tomatophila, are two common and destructive foliar diseases of the cultivated tomato (Solanum lycopersicum) and potato (Solanum tuberosum) in the United States and elsewhere in the world. While LB can infect and devastate tomato plants at any developmental stages, EB infection is usually associated with plant physiological maturity and fruit load where older senescing plants exhibit greater susceptibility and a heavy fruit set enhances the disease. At present, cultural practices and heavy use of fungicides are the most common measures for controlling LB and EB. Genetic resources for resistance have been identified for both diseases, largely within the tomato wild species, in particular the red-fruited species S. pimpinellifolium and the green-fruited species S. habrochaites. A few race-specific major resistance genes (e.g., Ph-1, Ph-2 and Ph-3) and several race-nonspecific resistance QTLs have been reported for LB. Ph-3 is a strong resistance gene and has been incorporated into many breeding lines of fresh market and processing tomato. However, new P. infestans isolates have been identified which overcome Ph-3 resistance. Recently, a new resistance gene (Ph-5) has been identified, which confers resistance to several pathogen isolates including those overcoming the previous resistance genes. Advanced breeding lines including Ph-5 alone and in combinations with Ph-2 and Ph-3 are being developed. Genetic controls of EB resistance have been studied and advanced breeding lines and cultivars with improved resistance have been developed through traditional breeding. Additionally, QTLs for EB resistance have been identified, which can be utilized for marker-assisted resistance breeding. Currently, new inbred lines and cultivars of tomato with good levels of EB resistance and competitive yield performance are being developed at the Pennsylvania State University. This review will focus on the current knowledge of both LB and EB with respect to the causal pathogens, host resistances, and genetics and breeding progresses.  相似文献   

9.
Screening of a large number of different diploid Solanum accessions with endosperm balance number (EBN) 1 revealed segregation for strong resistance and sensitivity to Phytophthora infestans in accessions of Solanum mochiquense. Genetic analysis showed that resistance in S. mochiquense accession CGN18263 resides at the distal end of the long arm of chromosome IX, is linked to restriction fragment length polymorphism marker TG328 and is in the neighbourhood of the quantitative trait locus (QTL) Ph-3 conferring resistance to P. infestans in tomato. This is the first genetic study of S. mochiquense, a wild diploid species originating from fog oases in the Peruvian coastal desert.  相似文献   

10.
A novel source of resistance to two-spotted spider mite (Tetranychus urticae Koch) was found in Solanum pimpinellifolium L. accession TO-937 and thereby a potential source of desirable traits that could be introduced into new tomato varieties. This resistance was found to be controlled by a major locus modulated by minor loci of unknown location in the genome of this wild tomato. We first applied a bulked segregant analysis (BSA) approach in an F4 population as a method for rapidly identifying a genomic region of 17 cM on chromosome 2, flanked by two simple sequence repeat markers, harboring Rtu2.1, one of the major QTL involved in the spider mite resistance. A population of 169 recombinant inbred lines was also evaluated for spider mite infestation and a highly saturated genetic map was developed from this population. QTL mapping corroborated that chromosome 2 harbored the Rtu2.1 QTL in the same region that our previous BSA findings pointed out, but an even more robust QTL was found in the telomeric region of this chromosome. This QTL, we termed Rtu2.2, had a LOD score of 15.43 and accounted for more than 30 % of the variance of two-spotted spider mite resistance. Several candidate genes involved in trichome formation, synthesis of trichomes exudates and plant defense signaling have been sequenced. However, either the lack of polymorphisms between the parental lines or their map position, away from the QTL, led to their rejection as candidate genes responsible for the two-spotted spider mite resistance. The Rtu2 QTL not only serve as a valuable target for marker-assisted selection of new spider mite-resistant tomato varieties, but also as a starting point for a better understanding of the molecular genetic functions underlying the resistance to this pest.  相似文献   

11.
Main and interaction effects of day-length and pathogen isolate on the reaction and expression of field resistance to Phytophthora infestans were analyzed in a sample of standard clones for partial resistance to potato late blight, and in the BCT mapping population derived from a backcross of Solanum berthaultii to Solanum tuberosum. Detached leaves from plants grown in field plots exposed to short- and long day-length conditions were independently inoculated with two P. infestans isolates and incubated in chambers under short- and long photoperiods, respectively. Lesion growth rate (LGR) was used for resistance assessment. Analysis of variance revealed a significant contribution of genotype × isolate × day-length interaction to variation in LGR indicating that field resistance of genotypes to foliar late blight under a given day-length depended on the infecting isolate. An allele segregating from S. berthaultii with opposite effects on foliar resistance to late blight under long- and short day-lengths, respectively, was identified at a quantitative trait locus (QTL) that mapped on chromosome 1. This allele was associated with positive (decreased resistance) and negative (increased resistance) additive effects on LGR, under short- and long day-length conditions, respectively. Disease progress on whole plants inoculated with the same isolate under field conditions validated the direction of its effect in short day-length regimes. The present study suggests the occurrence of an isolate-specific QTL that displays interaction with isolate behavior under contrasting environments, such as those with different day-lengths. This study highlights the importance of exposing genotypes to a highly variable population of the pathogen under contrasting environments when stability to late blight resistance is to be assessed or marker-assisted selection is attempted for the manipulation of quantitative resistance to late blight.  相似文献   

12.
Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with thefield experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato.  相似文献   

13.
Six F1 populations produced from crosses between two Solanum microdontum genotypes and three S. tuberosum genotypes have been assessed for resistance to Phytophthora infestans (late blight; LB) in the field and proved to segregate for P. infestans resistance. The six populations were subjected to genetic mapping using AFLP markers in combination with a core map consisting of RFLPs and a few PCR-based markers. The two S. microdontum parents MCD167 and MCD178 harbour different alleles contributing to resistance. In the MCD167 set of populations a major QTL contributing to resistance was located on chromosome 4. This locus was not detected in the MCD178 set of populations. In the latter set of populations, a major QTL for resistance was detected on chromosome 10. This locus for resistance was not detected in the MCD167 set of populations. A third QTL contributing strongly to resistance was detected on chromosome 5. However, this locus was not consistently detected in all populations. For the loci on chromosome 5 and 10, segregation for resistance alleles from the susceptible parents was also observed. The results provide a starting point for future combinations of genes, to predict the value of each combination and finally to obtain potato germplasm carrying high levels of durable resistance to LB.  相似文献   

14.
Aims: To isolate and identify antioomycete substances from Fusarium oxysporum EF119 against Phytophthora infestans and to investigate their antimicrobial activities against various plant pathogenic bacteria, oomycetes and true fungi. Methods and Results: Two antioomycete substances were isolated from liquid cultures of F. oxysporum EF119, which shows a potent disease control efficacy against tomato late blight caused by P. infestans. They were identified as bikaverin and fusaric acid by mass and nuclear magnetic resonance spectral analyses. They inhibited the mycelial growth of plant pathogenic oomycetes and fungi. Fusaric acid also effectively suppressed the cell growth of various plant pathogenic bacteria, but bikaverin was virtually inactive. Treatment with bikaverin at 300 μg ml?1 suppressed the development of tomato late blight by 71%. Fusaric acid provided effective control against tomato late blight and wheat leaf rust over 67% at concentrations more than 100 μg ml?1. Conclusions: Both bikaverin and fusaric acid showed in vitro and in vivo antioomycete activity against P. infestans. Significance and Impact of the Study: Fusarium oxysporum EF119 producing both bikaverin and fusaric acid may be used as a biocontrol agent against tomato late blight caused by P. infestans.  相似文献   

15.
Improvement of resistance to Fusarium head blight (FHB) is a continuous challenge for durum wheat breeders, particularly due to the limited genetic variation within this crop species. We accordingly generated a backcross-derived mapping population using the type 2 FHB resistant Triticum dicoccoides line Mt. Gerizim #36 as donor and the modern Austrian T. durum cultivar Helidur as recipient; 103 BC1F6:7 lines were phenotyped for type 2 FHB resistance using single-spikelet inoculations and genotyped with 421 DNA markers (SSR and AFLP). QTL mapping revealed two highly significant QTL, mapping to chromosomes 3A and 6B, respectively. For both QTL the T. dicoccoides allele improved type 2 FHB resistance. Recombinant lines with both favorable alleles fixed conferred high resistance to FHB similar to that observed in the T. dicoccoides parent. The results appear directly applicable for durum wheat resistance breeding.  相似文献   

16.
Late blight of potato, caused by Phytophthora infestans, is one of the most economically important diseases worldwide, resulting in substantial yield losses when not adequately controlled by fungicides. Late blight was a contributory factor in The Great Irish Famine, and breeding for resistance to the disease began soon after. Several disease-resistant cultivars have subsequently been obtained, and amongst them Sárpo Mira is currently one of the most effective. The aim of this work was to extend the knowledge about the genetic basis of the late blight resistance in Sárpo Mira and to identify molecular markers linked to the resistance locus which would be useful for marker-assisted selection. A tetraploid mapping population from a Sárpo Mira × Maris Piper cross was phenotyped for foliar late blight resistance using detached leaflet tests. A locus with strong effect on late blight resistance was mapped at the end of chromosome XI in the vicinity of the R3 locus. Sárpo Mira’s genetic map of chromosome XI contained 11 markers. Marker 45/XI exhibited the strongest linkage to the resistance locus and accounted for between 55.8 and 67.9 % of variance in the mean resistance scores noted in the detached leaflet assays. This marker was used in molecular marker-facilitated gene pyramiding. Ten breeding lines containing a late blight resistance locus from cultivar Sárpo Mira and the Rpi-phu1 gene originating from the late blight resistant accession of Solanum phureja were obtained. These lines have extended the spectrum of late blight resistance compared with Sárpo Mira and it is expected that resistance in plants containing this gene pyramid will have enhanced durability.  相似文献   

17.
The cultivated potato, Solanum tuberosum, is affected by a variety of diseases with late blight, caused by Phytophthora infestans, being the most severe. Wild potato species have proven to be a continuing source of resistance, sometimes of an extreme type, to this disease. The present study constructs the first late blight linkage map of a member of series Piurana, S. paucissectum, a tuber-bearing relative of potato, using probes for conserved sequences from potato and tomato. Eight probes mapped to unexpected linkage groups, but syntenic differences with prior maps of potato were not supported by any blocks of rearranged chromosome segments. All 12 linkage groups were resolved and significant associations with late blight resistance were found on chromosomes 10, 11 and 12. A major quantitative trait locus (QTL) on chromosome 11 accounts for more than 25% of the phenotypic variance measured in a field trial. Crossing of S. paucissectum with cultivated potato resulted in very few seeds indicating partial reproductive barriers. Differential reactions of accessions of this potential donor species with simple and complex isolates of P. infestans suggest that it carries major resistance genes that are not those previously described from the Mexican species, S. demissum. However, the additivity of the QTL effects argues for the quantitative nature of resistance in this cross.  相似文献   

18.

Key message

Dense linkage maps derived by analysing SNP dosage in autotetraploids provide detailed information about the location of, and genetic model at, quantitative trait loci.

Abstract

Recent developments in sequencing and genotyping technologies enable researchers to generate high-density single nucleotide polymorphism (SNP) genotype data for mapping studies. For polyploid species, the SNP genotypes are informative about allele dosage, and Hackett et al. (PLoS ONE 8:e63939, 2013) presented theory about how dosage information can be used in linkage map construction and quantitative trait locus (QTL) mapping for an F1 population in an autotetraploid species. Here, QTL mapping using dosage information is explored for simulated phenotypic traits of moderate heritability and possibly non-additive effects. Different mapping strategies are compared, looking at additive and more complicated models, and model fitting as a single step or by iteratively re-weighted modelling. We recommend fitting an additive model without iterative re-weighting, and then exploring non-additive models for the genotype means estimated at the most likely position. We apply this strategy to re-analyse traits of high heritability from a potato population of 190 F1 individuals: flower colour, maturity, height and resistance to late blight (Phytophthora infestans (Mont.) de Bary) and potato cyst nematode (Globodera pallida), using a map of 3839 SNPs. The approximate confidence intervals for QTL locations have been improved by the detailed linkage map, and more information about the genetic model at each QTL has been revealed. For several of the reported QTLs, candidate SNPs can be identified, and used to propose candidate trait genes. We conclude that the high marker density is informative about the genetic model at loci of large effects, but that larger populations are needed to detect smaller QTLs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号