首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical signaling networks decode temporal patterns of synaptic input   总被引:2,自引:0,他引:2  
Synapses exhibit a wide repertoire of responses to different temporal patterns of synaptic input. Many of these responses are expressed as short and long-term changes in synaptic strength. Electrical properties of channels and calcium buildup can account for rapid aspects of pattern decoding, but it is not clear how more complex input patterns, especially those lasting over many minutes, could be discriminated. This paper shows that a network of signaling pathways can discriminate between complex input patterns lasting tens of minutes, and can give rise to distinct combinatorial patterns of biochemical signaling activity in pathways involved in synaptic change. Regulatory signaling input can alter and even reverse the strengths of responses to input patterns. Thus the synaptic signaling network may function as a temporal decoder that transforms patterns from the time domain into the domain of chemical signaling. This may underlie different synaptic responses to different stimulus patterns.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1019644427655  相似文献   

2.
3.
Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.  相似文献   

4.
Targeted mRNA translation is emerging as a critical mechanism to control gene expression during developmental processes. Exciting new findings have revealed a critical role for regulatory elements within the mRNA untranslated regions to direct the timing of mRNA translation. Regulatory elements can be targeted by sequence‐specific binding proteins to direct either repression or activation of mRNA translation in response to developmental signals. As new regulatory elements continue to be identified it has become clear that targeted mRNAs can contain multiple regulatory elements, directing apparently contradictory translational patterns. How is this complex regulatory input integrated? In this review, we focus on a new challenge area—how sequence‐specific RNA binding proteins respond to developmental signals and functionally integrate to regulate the extent and timing of target mRNA translation. We discuss current understanding with a particular emphasis on the control of cell cycle progression that is mediated through a complex interplay of distinct mRNA regulatory elements during Xenopus oocyte maturation. Mol. Reprod. Dev. 77: 662–669, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Meiotic cell cycle progression during vertebrate oocyte maturation requires the correct temporal translation of maternal mRNAs encoding key regulatory proteins. The mechanism by which specific mRNAs are temporally activated is unknown, although both cytoplasmic polyadenylation elements (CPE) within the 3'-untranslated region (3'-UTR) of mRNAs and the CPE-binding protein (CPEB) have been implicated. We report that in progesterone-stimulated Xenopus oocytes, the early cytoplasmic polyadenylation and translational activation of multiple maternal mRNAs occur in a CPE- and CPEB-independent manner. We demonstrate that polyadenylation response elements, originally identified in the 3'-UTR of the mRNA encoding the Mos proto-oncogene, direct CPE- and CPEB-independent polyadenylation of an early class of Xenopus maternal mRNAs. Our findings refute the hypothesis that CPE sequences alone account for the range of temporal inductions of maternal mRNAs observed during Xenopus oocyte maturation. Rather, our data indicate that the sequential action of distinct 3'-UTR-directed translational control mechanisms coordinates the complex temporal patterns and extent of protein synthesis during vertebrate meiotic cell cycle progression.  相似文献   

6.
7.
8.
In eukaryotic cells, it is generally accepted that protein synthesis is compartmentalized; soluble proteins are synthesized on free ribosomes, whereas secretory and membrane proteins are synthesized on endoplasmic reticulum (ER)-bound ribosomes. The partitioning of mRNAs that accompanies such compartmentalization arises early in protein synthesis, when ribosomes engaged in the translation of mRNAs encoding signal-sequence-bearing proteins are targeted to the ER. In this report, we use multiple cell fractionation protocols, in combination with cDNA microarray, nuclease protection, and Northern blot analyses, to assess the distribution of mRNAs between free and ER-bound ribosomes. We find a broad representation of mRNAs encoding soluble proteins in the ER fraction, with a subset of such mRNAs displaying substantial ER partitioning. In addition, we present evidence that membrane-bound ribosomes engage in the translation of mRNAs encoding soluble proteins. Single-cell in situ hybridization analysis of the subcellular distribution of mRNAs encoding ER-localized and soluble proteins identify two overall patterns of mRNA distribution in the cell-endoplasmic reticular and cytosolic. However, both partitioning patterns include a distinct perinuclear component. These results identify previously unappreciated roles for membrane-bound ribosomes in the subcellular compartmentalization of protein synthesis and indicate possible functions for the perinuclear membrane domain in mRNA sorting in the cell.  相似文献   

9.
10.
11.
Rhythmic activity of the brain often depends on synchronized spiking of interneuronal networks interacting with principal neurons. The quest for physiological mechanisms regulating network synchronization has therefore been firmly focused on synaptic circuits. However, it has recently emerged that synaptic efficacy could be influenced by astrocytes that release signalling molecules into their macroscopic vicinity. To understand how this volume-limited synaptic regulation can affect oscillations in neural populations, here we explore an established artificial neural network mimicking hippocampal basket cells receiving inputs from pyramidal cells. We find that network oscillation frequencies and average cell firing rates are resilient to changes in excitatory input even when such changes occur in a significant proportion of participating interneurons, be they randomly distributed or clustered in space. The astroglia-like, volume-limited regulation of excitatory synaptic input appears to better preserve network synchronization (compared with a similar action evenly spread across the network) while leading to a structural segmentation of the network into cell subgroups with distinct firing patterns. These observations provide us with some previously unknown insights into the basic principles of neural network control by astroglia.  相似文献   

12.
Recent advances in our understanding of both the regulation of components of the translational machinery and the upstream signalling pathways that modulate them have provided important new insights into the mechanisms by which hormones, growth factors, nutrients and cellular energy status control protein synthesis in mammalian cells. The importance of proper control of mRNA translation is strikingly illustrated by the fact that defects in this process or its control are implicated in a number of disease states, such as cancer, tissue hypertrophy and neurodegeneration. Signalling pathways such as those involving mTOR (mammalian target of rapamycin) and mitogen-activated protein kinases modulate the phosphorylation of translation factors, the activities of the protein kinases that act upon them and the association of RNA-binding proteins with specific mRNAs. These effects contribute both to the overall control of protein synthesis (which is linked to cell growth) and to the modulation of the translation or stability of specific mRNAs. However, important questions remain about both the contributions of individual regulatory events to the control of general protein synthesis and the mechanisms by which the translation of specific mRNAs is controlled.  相似文献   

13.
14.
15.
Changes in synaptic efficacy are believed to form the cellular basis for memory. Protein synthesis in dendrites is needed to consolidate long-term synaptic changes. Many signals converge to regulate dendritic protein synthesis, including synaptic and cellular activity, and growth factors. The coordination of these multiple inputs is especially intriguing because the synthetic and control pathways themselves are among the synthesized proteins. We have modeled this system to study its molecular logic and to understand how runaway feedback is avoided. We show that growth factors such as brain-derived neurotrophic factor (BDNF) gate activity-triggered protein synthesis via mammalian target of rapamycin (mTOR). We also show that bistability is unlikely to arise from the major protein synthesis pathways in our model, even though these include several positive feedback loops. We propose that these gating and stability properties may serve to suppress runaway activation of the pathway, while preserving the key role of responsiveness to multiple sources of input.  相似文献   

16.
17.
Analysing microarray data using modular regulation analysis   总被引:3,自引:0,他引:3  
MOTIVATION: Microarray experiments measure complex changes in the abundance of many mRNAs under different conditions. Current analysis methods cannot distinguish between direct and indirect effects on expression, or calculate the relative importance of mRNAs in effecting responses. RESULTS: Application of modular regulation analysis to microarray data reveals and quantifies which mRNA changes are important for cellular responses. The mRNAs are clustered, and then we calculate how perturbations alter each cluster and how strongly those clusters affect an output response. The product of these values quantifies how an input changes a response through each cluster. Two published datasets are analysed. Two mRNA clusters transmit most of the response of yeast doubling time to galactose; one contains mainly galactose metabolic genes, and the other a regulatory gene. Analysis of the response of yeast relative fitness to 2-deoxy-D-glucose reveals that control is distributed between several mRNA clusters, but experimental error limits statistical significance.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号