首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

Background

Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka).

Methodology/Principal Findings

We used genetic analyses to determine the origin of sockeye from Canada''s two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance.

Conclusions/Significance

This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.  相似文献   

2.
3.
4.

Background

Naturally occurring coinfections of pathogens have been reported in salmonids, but their consequences on disease resistance are unclear. We hypothesized that 1) coinfection of Caligus rogercresseyi reduces the resistance of Atlantic salmon to Piscirickettsia salmonis; and 2) coinfection resistance is a heritable trait that does not correlate with resistance to a single infection.

Methodology

In total, 1,634 pedigreed Atlantic salmon were exposed to a single infection (SI) of P. salmonis (primary pathogen) or coinfection with C. rogercresseyi (secondary pathogen). Low and high level of coinfection were evaluated (LC = 44 copepodites per fish; HC = 88 copepodites per fish). Survival and quantitative genetic analyses were performed to determine the resistance to the single infection and coinfections.

Main Findings

C. rogercresseyi significantly increased the mortality in fish infected with P. salmonis (SI mortality = 251/545; LC mortality = 544/544 and HC mortality = 545/545). Heritability estimates for resistance to P. salmonis were similar and of medium magnitude in all treatments (h 2 SI = 0.23±0.07; h 2 LC = 0.17±0.08; h 2 HC = 0.24±0.07). A large and significant genetic correlation with regard to resistance was observed between coinfection treatments (rg LC-HC = 0.99±0.01) but not between the single and coinfection treatments (rg SI-LC = −0.14±0.33; rg SI-HC = 0.32±0.34).

Conclusions/Significance

C. rogercresseyi, as a secondary pathogen, reduces the resistance of Atlantic salmon to the pathogen P. salmonis. Resistance to coinfection of Piscirickettsia salmonis and Caligus rogercresseyi in Atlantic salmon is a heritable trait. The absence of a genetic correlation between resistance to a single infection and resistance to coinfection indicates that different genes control these processes. Coinfection of different pathogens and resistance to coinfection needs to be considered in future research on salmon farming, selective breeding and conservation.  相似文献   

5.

Background

Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV.

Results

Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions.

Conclusions

Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-462) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
Nagasawa  Kazuya 《Hydrobiologia》2001,(1):411-416
The population size of the salmon louse, Lepeophtheirus salmonis, was monitored annually in the summers of 1991–1997 by examining six species of Pacific salmon (Oncorhynchus spp.) caught by surface long-lines in oceanic offshore waters of the North Pacific Ocean and Bering Sea. The annual copepod population size on all salmonids caught was estimated by combining the calculated number of copepods carrying on each salmonid species. The copepod population fluctuated markedly from year to year, which resulted largely from marked annual changes in abundance of pink salmon (O. gorbuscha). Since pink salmon were most frequently and heavily infected and since their abundance changed every year, the copepod population was high in the years when this salmonid species was abundant, but low when it was rare. On the contrary, chum salmon (O. keta) did not show high prevalence and intensity of infection, but the annual abundance of this host species was consistently high, i.e. chum salmon carried many copepods every year. Copepods on other salmonid species (sockeye salmon O. nerka, coho salmon O. kisutch, chinook salmon O. tshawytscha, and steelhead trout O. mykiss) constantly formed a small percentage of the total copepod population. Both chum and pink salmon are the most important hosts in terms of their substantial contribution to support the copepod population, but the importance as hosts of each species is definitely different between the species. Chum salmon is a stable important host supporting the copepod population at a relatively high level every year, while the number of copepods on pink salmon annually exhibits marked fluctuations, and this salmonid species is regarded as an unstable important host.  相似文献   

8.
9.

Background

Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland.

Methods

One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses.

Results

Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28).

Conclusions

Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of its closer geographic proximity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0121-9) contains supplementary material, which is available to authorized users.  相似文献   

10.
The mucus protein profile of Atlantic salmon (Salmo salar) and changes due to infection with sea lice (Lepeophtheirus salmonis) were examined. Two-dimensional gel electrophoresis was performed on salmon skin mucus and comparisons between control and infected fish mucus were made. LC MS/MS identified intracellular proteins, calmodulin, actin, and hemopexin and plasma proteins, such as apolipoproteins, lectin, plasminogen and transferrin. Plasma proteins in the mucus may result from either direct expression by epidermal cells, leakage of plasma or via a secondary circulation system. Therefore, RT-PCR was used to measure mRNA of transferrin and lectin in Atlantic salmon skin. Transferrin expression was observed suggesting direct expression by the epidermis. Lectin expression was not detected suggesting another mechanism of entry into mucus, either leakage from plasma or secondary circulation. The lack of observable albumin on 2D gels, suggests that mucus lectin may arise from the secondary circulation route. Interestingly, β-actin was a significant component of Atlantic salmon mucus. Cleaved actin and transferrin fragments were observed and positively correlated with sea lice infection suggestive of proteolytic activity. Increased levels of cleaved transferrin during sea lice infection may activate the nitrous oxide response of salmon macrophages, as part of the fish's immune response to sea lice infection.  相似文献   

11.
12.

Background

Dietary interventions are critical in the prevention of metabolic diseases. Yet, the effects of fatty fish consumption on type 2 diabetes remain unclear. The aim of this study was to investigate whether a diet containing farmed salmon prevents or contributes to insulin resistance in mice.

Methodology/Principal Findings

Adult male C57BL/6J mice were fed control diet (C), a very high-fat diet without or with farmed Atlantic salmon fillet (VHF and VHF/S, respectively), and Western diet without or with farmed Atlantic salmon fillet (WD and WD/S, respectively). Other mice were fed VHF containing farmed salmon fillet with reduced concentrations of persistent organic pollutants (VHF/S-POPs). We assessed body weight gain, fat mass, insulin sensitivity, glucose tolerance, ex vivo muscle glucose uptake, performed histology and immunohistochemistry analysis, and investigated gene and protein expression. In comparison with animals fed VHF and WD, consumption of both VHF/S and WD/S exaggerated insulin resistance, visceral obesity, and glucose intolerance. In addition, the ability of insulin to stimulate Akt phosphorylation and muscle glucose uptake was impaired in mice fed farmed salmon. Relative to VHF/S-fed mice, animals fed VHF/S-POPs had less body burdens of POPs, accumulated less visceral fat, and had reduced mRNA levels of TNFα as well as macrophage infiltration in adipose tissue. VHF/S-POPs-fed mice further exhibited better insulin sensitivity and glucose tolerance than mice fed VHF/S.

Conclusions/Significance

Our data indicate that intake of farmed salmon fillet contributes to several metabolic disorders linked to type 2 diabetes and obesity, and suggest a role of POPs in these deleterious effects. Overall, these findings may participate to improve nutritional strategies for the prevention and therapy of insulin resistance.  相似文献   

13.
Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km fjord system and had, thus, entered the ocean when the more pathogenic pre-adult and adult lice stages developed. The brown trout, in comparison to Atlantic salmon, remained to a larger extent than Atlantic salmon in the inner part of the fjord system. No effect of salmon lice infection, or protection, was found in brown trout during the first weeks of their fjord migration. Brown trout will, to a larger extent than Atlantic salmon, stay in the fjord areas when salmon lice infections reach the more pathogenic pre-adult and adult stages. In contrast to Atlantic salmon, they will thereby possess the practical capability of returning to freshwater when encountering severe salmon lice attacks.  相似文献   

14.
15.
16.

Background

Furunculosis, caused by Aeromonas salmonicida, continues to be a major health problem for the growing salmonid aquaculture. Despite effective vaccination programs regular outbreaks occur at the fish farms calling for repeated antibiotic treatment. We hypothesized that a difference in natural susceptibility to this disease might exist between Baltic salmon and the widely used rainbow trout.

Study Design

A cohabitation challenge model was applied to investigate the relative susceptibility to infection with A. salmonicida in rainbow trout and Baltic salmon. The course of infection was monitored daily over a 30-day period post challenge and the results were summarized in mortality curves.

Results

A. salmonicida was recovered from mortalities during the entire test period. At day 30 the survival was 6.2% and 34.0% for rainbow trout and Baltic salmon, respectively. Significant differences in susceptibility to A. salmonicida were demonstrated between the two salmonids and hazard ratio estimation between rainbow trout and Baltic salmon showed a 3.36 higher risk of dying from the infection in the former.

Conclusion

The finding that Baltic salmon carries a high level of natural resistance to furunculosis might raise new possibilities for salmonid aquaculture in terms of minimizing disease outbreaks and the use of antibiotics.  相似文献   

17.

Background

Over recent decades jellyfish have caused fish kill events and recurrent gill problems in marine-farmed salmonids. Common jellyfish (Aurelia spp.) are among the most cosmopolitan jellyfish species in the oceans, with populations increasing in many coastal areas. The negative interaction between jellyfish and fish in aquaculture remains a poorly studied area of science. Thus, a recent fish mortality event in Ireland, involving Aurelia aurita, spurred an investigation into the effects of this jellyfish on marine-farmed salmon.

Methodology/Principal Findings

To address the in vivo impact of the common jellyfish (A. aurita) on salmonids, we exposed Atlantic salmon (Salmo salar) smolts to macerated A. aurita for 10 hrs under experimental challenge. Gill tissues of control and experimental treatment groups were scored with a system that rated the damage between 0 and 21 using a range of primary and secondary parameters. Our results revealed that A. aurita rapidly and extensively damaged the gills of S. salar, with the pathogenesis of the disorder progressing even after the jellyfish were removed. After only 2 hrs of exposure, significant multi-focal damage to gill tissues was apparent. The nature and extent of the damage increased up to 48 hrs from the start of the challenge. Although the gills remained extensively damaged at 3 wks from the start of the challenge trial, shortening of the gill lamellae and organisation of the cells indicated an attempt to repair the damage suffered.

Conclusions

Our findings clearly demonstrate that A. aurita can cause severe gill problems in marine-farmed fish. With aquaculture predicted to expand worldwide and evidence suggesting that jellyfish populations are increasing in some areas, this threat to aquaculture is of rising concern as significant losses due to jellyfish could be expected to increase in the future.  相似文献   

18.

Background

Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism.

Methodology/Principal Findings

We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection.

Conclusion

We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.  相似文献   

19.
A synthesis of results from two projects was assessed to analyse possible influence of sea lice Lepeophtheirus salmonis on marine Atlantic salmon Salmo salar survival. During the years 1992–2004, trawling for wild migrating post-smolts was performed in Trondheimsfjord, a fjord in which no Atlantic salmon aquaculture activity is permitted. Prevalence and intensity of sea lice infections on migrating wild post-smolts differed between years. A correlation analysis between 1 sea-winter (SW) Atlantic salmon catch statistics from the River Orkla (a Trondheimsfjord river) and sea lice infections on the migrating smolts in the Trondheimsfjord was not significant. Up to 2% reduction in adult returns due to sea-lice infection was expected. In addition, experimental releases from 1996 to 1998 with individually tagged groups of hatchery-reared Atlantic salmon smolts given protection against sea-lice infection was performed. Higher recaptures of adult Atlantic salmon from 1998 treated smolts compared to the control group may correspond to high abundance of sea lice found on the wild smolt, and may indicate influence on post-smolt mortality. These studies indicate that post-smolt mortality in Trondheimsfjord is marginally influenced by sea lice infection; however, the methods for assessing wild smolt mortality might be insufficient. Higher infections of sea lice farther out in the fjord may indicate more loss in Atlantic salmon returns in some years.  相似文献   

20.
Salmon lice (Lepeophtheirus salmonis) are parasitic copepods, living mainly on Atlantic salmon and leading to large economical losses in aquaculture every year. Due to the emergence of resistances to several drugs, alternative treatments are developed, including treatment with hydrogen peroxide, freshwater or thermal treatment. The present study gives a first overview of the thermotolerance and stress response of salmon lice. Sea lice nauplii acclimated to 10 °C can survive heat shocks up to 30 °C and are capable of hardening by a sublethal heat shock. We searched in the genome for heat shock protein (HSP) encoding genes and tested their inducibility after heat shock, changes in salinity and treatment with hydrogen peroxide, employing microfluidic qPCRs. We assessed 38 candidate genes, belonging to the small HSP, HSP40, HSP70 and HSP90 families. Nine of these genes showed strong induction after a non-lethal heat shock. In contrast, only three and two of these genes were induced after changes in salinity and incubation in hydrogen peroxide, respectively. This work provides the basis for further work on the stress response on the economically important parasite L. salmonis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号