首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the formation of DNA single-strand breaks in MNL in close proximity to activated phagocytes, or in contact with added H2O2 and/or HOCl, were evaluated. Neutrophils activated by phorbol myristate acetate (PMA), induced DNA-strand breaks in neighboring lymphocytes which increased after 1-2 h incubation in a repair medium. These DNA-strand breaks could be prevented by the addition of catalase or substitution of the neutrophils with cells from a patient with chronic granulomatous disease. Inclusion of the myeloperoxidase (MPO) inhibitor, sodium azide (NaN3), to the system was associated with less damage after 1-2 h incubation and a faster repair rate. Exposure of MNL to added reagent H2O2 (12-100 microM) was also accompanied by DNA damage. Addition of reagent HOCl (3-25 microM) did not induce any DNA-strand breaks. However, when combined with H2O2 (12.5 microM), HOCl increased H2O2-mediated DNA damage and compromised the repair process. Interactions between the phagocyte-derived reactive oxidants H2O2 and HOCl are probably involved in the etiology of inflammation-related cancer.  相似文献   

2.
Myeloperoxidase (MPO), which displays considerable amino acid sequence homology with thyroid peroxidase (TPO) and lactoperoxidase (LPO), was tested for its ability to catalyze iodination of thyroglobulin and coupling of two diiodotyrosyl residues within thyroglobulin to form thyroxine. After 1 min of incubation in a system containing goiter thyroglobulin, I-, and H2O2, the pH optimum of MPO-catalyzed iodination was markedly acidic (approximately 4.0), compared to LPO (approximately 5.4) and TPO (approximately 6.6). The presence of 0.1 N Cl- or Br- shifted the pH optimum for MPO to about 5.4 but had little or no effect on TPO- or LPO-catalyzed iodination. At pH 5.4, 0.1 N Cl- and 0.1 N Br- had a marked stimulatory effect on MPO-catalyzed iodination. At pH 4.0, however, iodinating activity of MPO was almost completely inhibited by 0.1 N Cl- or Br-. Inhibition of chlorinating activity of MPO by Cl- at pH 4.0 has been previously described. When iodination of goiter thyroglobulin was performed with MPO plus the H2O2 generating system, glucose-glucose oxidase, at pH 7.0, the iodinating activity was markedly increased by 0.1 N Cl-. Under these conditions iodination and thyroxine formation were comparable to values observed with TPO. MPO and TPO were also compared for coupling activity in a system that measures coupling of diiodotyrosyl residues in thyroglobulin in the absence of iodination. MPO displayed very significant coupling activity, and, like TPO, this activity was stimulated by a low concentration of free diiodotyrosine (1 microM). The thioureylene drugs, propylthiouracil and methimazole, inhibited MPO-catalyzed iodination both reversibly and irreversibly, in a manner similar to that previously described for TPO-catalyzed iodination.  相似文献   

3.
The mutagenicity of nitrated benzo[a]pyrene (BP) and the related compounds, 1- and 3-nitrobenzo[a]pyrene (NBP), 1- and 3-nitro-6-cyanobenzo[a]pyrene (N-6-CBP), 1- and 3-nitro-6-azabenzo[a]-pyrene (N-6-ABP), 1- and 3-nitro-6-azabenzo[a]-pyrene-N-oxide (N-6-ABPO) and 1,6- and 3,6-dinitrobenzo[a]-pyrene (DNBP), was investigated. The mutagenic activities of 3-N-6-CBP and 3-N-6-ABP were 117 and 76 times, respectively, that of 3-NBP. In addition, 3,6-DNBP was more mutagenic than 1,6-DNBP. It is suggested that the mutagenic activation differs with the position of NO2 substitution in the chemical structure. A nitro derivative with NO2 substitution at the 3 position of the aromatic ring of BP was more mutagenic than that with the substitution at the 1 or 6 position. The reducibility of DNBPs was then determined by detecting 1- or 3-amino-6-nitrobenzo[a]pyrene (A-6-NBP), a metabolite of DNBP; 3,6- and 1,6-DNBP were reduced to 3- and 1-A-6-NBP at frequencies of 958 +/- 26 and 79 +/- 8, respectively, pmole per mg of protein, when the compound was incubated anaerobically with rat liver S9 mix at 37 degrees C for 15 min. NO2 substituted at the 3 position of the aromatic ring of BP was readily reduced by a microsome enzyme to form an amino derivative. The result suggests that these compounds have a structure-activity relationship between mutagenicity and NO2 substitution of BP.  相似文献   

4.
T Nakatsuka  S Hanada  T Fujii 《Teratology》1983,28(2):243-247
A previous study demonstrated that caffeine strongly potentiated the teratogenic action of mitomycin C in mice. In the present study the effect of methylxanthines including caffeine, theophylline, theobromine (theobromine sodium salicylate), paraxanthine, and 1-methylxanthine was compared in order to analyze the structure-activity relationship. Jcl:ICR mice were injected IP with 3 mg/kg of mitomycin C, immediately followed by SC injection of each methylxanthine on day 11 of gestation. The doses of methylxanthines were calculated so that the mice received 50 mg/kg of caffeine or the equimolecular amount of the other methylxanthines. Fetuses were examined for external malformations on day 18 of gestation. Mitomycin C at 3 mg/kg and the methylxanthines at the doses used were not teratogenic. Combined administration of caffeine or theophylline with mitomycin C produced more than 80% of malformed fetuses. Although less effective than caffeine or theophylline, paraxanthine also significantly increased the incidence of malformed fetuses. Theobromine and 1-methylxanthine were virtually ineffective. From these findings, it is suggested that the methyl group at N-1 position of the xanthines is important for the enhancement but the N-1 methylation alone is ineffective unless accompanied with the substitution of the methyl moiety at the other position(s).  相似文献   

5.
The methyl xanthines, theophylline, caffeine and 3-isobutyl-1 methyl xanthine (MIX) inhibited the pressure responses to noradrnealine, angiotensin II and potassium ions in the isolated perfused mesenteric vascular bed of the male rat. The ID50s for inhibition of responses to noradrenaline were 1.85 mug/ml (0.83 x 10(-5) M) for MIX, 18 mug/ml (1 x 10(-4)M) for theophylline and 133 mug/ml (6.8 x 10(-4) M) for caffeine. Similar ID50 concentrations were found for responses to angiotensin II and potassium. We have previously found that substances which inhibit the three pressor agents equally may be prostaglandin (PG) synthesis inhibitors or PG antagonists. Xanthine itself, cyclic AMP and dibutyrl cyclic AMP had no inhibitory effects on the preparation up to concentrations of 10-2 M. Partial inhibition of PG synthesis by indomethacin shifted the % inhibition/log concentration curve to the left, while addition of exogenous PGE2 shifted it to the right. In preparations completely inhibited by sufficient indomethacin added to the perfusate to block PG synthesis, and then restored by adding 1 or 5 ng/ml PGE2 in addition to the indomethacin, the methyl xanthines again inhibited responses suggesting that they were PG antagonists rather than inhibitors of synthesis or release. In preliminary experiments MIX also inhibited effects of PGF2alpha on rat uterus and PGE1 on guinea pig ileum. Effective concentrations of theophylline were similar to the therapeutic levels in human plasma. PG antagonists may be a major action of methyl xanthines requiring reinterpretation of many experiments which have attributed their effects to PDE inhibition. PGs may also be involved in regulating PDE action.  相似文献   

6.
We investigated the effects of a cysteine residue on tyrosine nitration in several model peptides treated with myeloperoxidase (MPO), H(2)O(2), and nitrite anion (NO(2)(-)) and with horseradish peroxidase and H(2)O(2). Sequences of model peptides were acetyl-Tyr-Cys-amide (YC), acetyl-Tyr-Ala-Cys-amide (YAC), acetyl-Tyr-Ala-Ala-Cys-amide (YAAC), and acetyl-Tyr-Ala-Ala-Ala-Ala-Cys-amide (YAAAAC). Results indicate that nitration and oxidation products of tyrosyl residue in YC and other model peptides were barely detectable. A major product detected was the corresponding disulfide (e.g. YCysCysY). Spin trapping experiments with 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) revealed thiyl adduct (e.g. DMPO-SCys-Tyr) formation from peptides (e.g. YC) treated with MPO/H(2)O(2) and MPO/H(2)O(2)/NO(2)(-). The steady-state concentrations of DMPO-thiyl adducts decreased with increasing chain length of model peptides. Blocking the sulfydryl group in YC with methylmethanethiosulfonate (that formed YCSSCH(3)) totally inhibited thiyl radical formation as did substitution of Tyr with Phe (i.e. FC) in the presence of MPO/H(2)O(2)/NO(2)(-). However, increased tyrosine nitration, tyrosine dimerization, and tyrosyl radical formation were detected in the MPO/H(2)O(2)/NO(2)(-)/YCSSCH(3) system. Increased formation of S-nitrosated YC (YCysNO) was detected in the MPO/H(2)O(2)/(*)NO system. We conclude that a rapid intramolecular electron transfer reaction between the tyrosyl radical and the Cys residue impedes tyrosine nitration and induces corresponding thiyl radical and nitrosocysteine product. Implications of this novel intramolecular electron transfer mechanism in protein nitration and nitrosation are discussed.  相似文献   

7.
The enzyme myeloperoxidase (MPO) is a functionally important glycoprotein of neutrophilic granulocytes and occurs in three major isoforms (forms 1, 2, and 3) that are dimeric structures composed of two heavy subunit-light subunit protomers, each of which is associated with a chlorine-like prosthetic group. In the present study, highly purified MPO isoforms were obtained from the cells of a single normal donor, and each protein was subjected to reductive alkylation under nondenaturing conditions. The resulting enzymatically active protomers were separated from unreacted dimer using gel filtration chromatography. Use of a fast protein liquid chromatography cation exchange system with a Mono S matrix revealed heterogeneity of the protomers, and allowed essentially complete resolution of the protomers of MPO form 2. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two resolved protomeric species under reducing conditions revealed small but reproducible differences in the Mr of their heavy subunits (59,000 and 57,000). Treatment with either endo-beta-N-acetylglucosaminidase or peptide N-glycohydrolase F reduced the Mr of each heavy subunit by approximately 3000 but did not change their relative electrophoretic mobilities. Heavy and light subunits were prepared from each of the MPO isoforms by reductive alkylation under conditions that allowed full retention of the prosthetic group with the heavy subunit. Reverse-phase chromatography and amino-terminal sequencing showed that each MPO isoform contained one major species of light subunit and several minor species. No differences in peroxidatic activity or inhibition by salicylhydroxamic acid were observed among any of the MPO isoforms or resolved protomers, but the latter were considerably more heat labile than dimeric forms of the enzyme and a monomeric form isolated from HL-60 cells. This is the first report of the isolation and partial characterization of distinct protomers from a single isoform of human MPO and suggests that the structure of MPO is more complex than considered previously.  相似文献   

8.
The methyl xanthines theophylline, caffeine and 1-methyl-3-isobutyl xanthine (MIX) stimulated the formation of prostaglandins (PG's) by bovine seminal vesicle microsomes (BSVM) and rabbit renal papilla microsomes (RRPM). The endoperoxide synthetase is probably the primary target of methyl xanthine action, as all the different PG's produced by RRPM were increased. However, a compound tentatively identified as PGD2 was more increased than other PG's. The experiments further indicate that the effect of methyl xanthines is dependent on a non-microsomal factor, or on removal of a rapidly formed toxic component, for maximal stimulation, and that the stimulation is probably not related to oxygen radical scavenging. MIX was the most potent drug in the BSVM-system (EC50=0.9 mM), followed by caffeine (EC50=1.3 mM) and theophylline (EC50=2.7 mM). Methyl xanthines are well-known inhibitors of cyclic nucleotide phosphodiesterase (PDE) and BSVM was rich in PDE-activity. BSVM-PDE was inhibited by the methyl xanthines, but a non-xanthine, papaverine, which was a potent BSVM-PDE inhibitor, did not stimulate PG-synthesis. Furthermore, cyclic nucleotides had no effect on PG-synthesis. It is therefore concluded that the stimulation of PG's by methyl xanthines is not related to inhibition of PDE. The possibility of a mechanism dependent on impairment of PG-metabolism was also excluded. Thus, methyl xanthines have a direct stimulatory effect on PG-synthesis in vitro.  相似文献   

9.
Neutrophils and other phagocytes can injure cells by means of oxygen-dependent mechanisms, particularly the myeloperoxidase (MPO)-H2O2-halide system. The extent of such damage depends in part on the antioxidant defenses of the target cell. To facilitate the study of this phenomenon, we developed a model system in which we employed liposomes as targets for the myeloperoxidase system. The most useful species of liposomes employed 51Cr as the aqueous space marker and phosphatidyl choline with or without dicetyl phosphate and cholesterol as the structural lipid. Marker entrapment was established on the basis of 1) resolution of free from lipid-associated 51Cr by gel exclusion chromatography, 2) latency of 51Cr on rechromatography of detergent-treated liposomes, and 3) a correlation between entrapment and surface charge density. Exposure of liposomes to the complete MPO system resulted in release of 50 to 75% of the entrapped 51Cr. Release was abrogated by omission of myeloperoxidase or H2O2, heating of MPO, or addition of azide, cyanide, or catalase. Reagent H2O2 could be replaced by glucose plus glucose oxidase. Kinetic studies indicated a rapid process, lysis reaching half-maximal levels in less than 2 min. The addition of cyanide at various times interrupted lysis at once, indicating a requirement for ongoing myeloperoxidase-dependent reactions. Liposome disruption by the MPO system was pH dependent, increasing dramatically as pH was decreased from neutrality to 6.0. In the absence of halides, no lysis was observed. Maximum lysis was found with chloride at 10 to 100 mM, although at 1 mM concentrations, iodide, bromide, and thiocyanate were more active than chloride. Fluoride was inactive. Antagonism between halide species was demonstrated in that low concentrations of iodide or bromide inhibited the effect of optimal concentrations of chloride. Using 125I, we found that exposure of liposomes to the MPO system resulted in an association between iodide and liposomes; moreover, there was a close correspondence between this phenomenon and 51Cr release, suggesting that halogenation may be one mechanism of injury. These studies establish the usefulness of the liposome as a model of oxidant injury by a physiologically relevant system. They bear a striking parallel to work being done on MPO-mediated injury to eukaryotic and prokaryotic cells. By using this simplified model system, it should be possible to explore a number of determinants of target cell injury at a biochemical and molecular level.  相似文献   

10.
Two site-directed mutants of human promyeloperoxidase, MPO(His416----Ala) and MPO(His502----Ala), have been expressed in Chinese hamster ovary cells and purified. Overall purification yields and apparent molecular masses of the mutant proteins were similar to those of the wild-type enzyme. Both mutant species were analyzed spectroscopically to check the presence of the hemic iron in the proteins and were assayed for peroxidase activity. The data show that substitution of His502 leads to the loss, or to an inappropriate configuration, of the heme together with the loss of activity, suggesting that this residue could be the proximal His involved in the binding to the iron centers. On the other hand, substitution of His416 by alanine had no effect on either of the studied parameters.  相似文献   

11.
Dehydrophenylalanine having the Z-configuration (delta Phe) and D-Phe were incorporated in positions 3 and/or 5 into dermorphin-(1-5)-peptide amide (H-Tyr-D-Ala-Phe-Gly-Tyr-NH2) in order to study the effect of structure or configurational changes. On GPI preparation, whereas the activity of [L-Phe5]-pentapeptide was fourfold higher than parent peptide and comparable to that of dermorphin, the substitution of Phe3 by its D-enantiomer was barely tolerated. The pentapeptides containing delta Phe in positions 3 and/or 5 displayed even lower potency: particularly the unsaturation at position 3 alone or at position 3 and 5 was very detrimental to mu activity.  相似文献   

12.
13.
The stability of growth-hormone releasing factor (growth regulating factor; GRF) analogs in porcine plasma was examined. GRF analogs were incubated in porcine plasma at 37 degrees C, extracted and subsequently analyzed using high performance liquid chromatography (HPLC). GRF(1-29)-NH2 was rapidly broken down in the plasma with a degradation rate of t1/2 = 13 min. The primary degradation product was identified as GRF(3-29)-NH2. Substitution of Gly15 by Ala15 slightly prolonged the plasma half-life (t1/2 = 17 min) and the major degradative fragment was found to be [Ala15]GRF(3-29)-NH2. The cleavage between the 2 and 3 position of the peptide was not inhibited by trasylol at a concentration of 1,000 KIU/ml but was dramatically reduced by the combined use of diprotin A and trasylol. Absence of the free amino group at the N-terminus and/or substitution of a D-amino acid residue at the penultimate position completely prevented cleavage between the 2 and 3 position in the structural linear GRF analogs. Side-chain to side-chain cyclization between Asp8 and Lys12 amino acid residues significantly improved the stability of GRF in plasma with t1/2 greater than 2 hr. An additional stability was provided by substitution of D-Ala2 for Ala2 in the structural cyclic analog. Cyclization between Lys21 and Asp25 also improved the stability of the GRF peptide in the plasma. Stability was further enhanced by the presence of D-Ala2 or by forming a dicyclic analog through an additional linkage between Asp8 and Lys12.  相似文献   

14.
Structural elucidation of the sialylated lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae (NTHi) strain 486 has been achieved by the application of high-field NMR techniques and ESI-MS along with composition and linkage analyses on O-deacylated LPS and oligosaccharide samples. It was found that the LPS contains the common element of H. influenzae, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A, but instead of glycosyl substitution of the terminal heptose residue (HepIII) at the O2 position observed in other H. influenzae strains, HepIII is chain elongated at the O3 position by either lactose or sialyllactose (i.e. alpha-Neu5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp). The LPS is substituted by an O-acetyl group linked to the O2 position of HepIII and phosphocholine (PCho) which was located at the O6 position of a terminal alpha-D-Glcp residue attached to the central heptose, a molecular environment different from what has been reported earlier for PCho. In addition, minor substitution by O-linked glycine to the LPS was observed. By investigation of LPS from a lpsA mutant of NTHi strain 486, it was demonstrated that the lpsA gene product also is responsible for chain extension from HepIII in this strain. The involvement of lic1 in expression of PCho was established by investigation of a lic1 mutant of NTHi strain 486.  相似文献   

15.
The adenosine A2A receptor is considered to be an important target for the development of new therapies for Parkinson’s disease. Several antagonists of the A2A receptor have entered clinical trials for this purpose and many research groups have initiated programs to develop A2A receptor antagonists. Most A2A receptor antagonists belong to two different chemical classes, the xanthine derivatives and the amino-substituted heterocyclic compounds. In an attempt to discover high affinity A2A receptor antagonists and to further explore the structure–activity relationships (SARs) of A2A antagonism by the xanthine class of compounds, this study examines the A2A antagonistic properties of series of (E)-8-styrylxanthines, 8-(phenoxymethyl)xanthines and 8-(3-phenylpropyl)xanthines. The results document that among these series, the (E)-8-styrylxanthines have the highest binding affinities with the most potent homologue, (E)-1,3-diethyl-7-methyl-8-[(3-trifluoromethyl)styryl]xanthine, exhibiting a Ki value of 11.9 nM. This compound was also effective in reversing haloperidol-induced catalepsy in rats, providing evidence that it is in fact an A2A receptor antagonist. The importance of substitution at C8 with the styryl moiety was demonstrated by the finding that none of the 8-(phenoxymethyl)xanthines and 8-(3-phenylpropyl)xanthines exhibited high binding affinities for the A2A receptor.  相似文献   

16.
Using MALDI-TOF mass spectrometry, we have shown that leukocytic myeloperoxidase (MPO) in the presence of its substrates (H2O2 and Br?) does not induce any changes in saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. Incubation of liposomes prepared from mono-unsaturated phosphatidylcholine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) with the (MPO + H2O2 + Br?) system resulted in formation of bromohydrins as the main products. 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysophosphatidylcholine) was the main product of the reaction of polyunsaturated phosphatidylcholine (1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine) with the (MPO + H2O2 + Br?) system. The formation of lysophospholipids as well as of bromohydrins was not observed when the enzyme or one of its substrates (H2O2 or Br?) was absent from the incubation medium, or if an inhibitor of MPO (sodium azide) or hypobromite scavengers (taurine or methionine) were added. Thus, it can be postulated that the formation of bromohydrins as well as lysophospholipids by the (MPO + H2O2 + Br?) system results from reactions of hypobromite formed during MPO catalysis with double bonds of acyl chains of phosphatidylcholine. Such destructive processes may take place in vivo in membrane-or lipoprotein-associated unsaturated lipids in centers of inflammation.  相似文献   

17.
The Phe3 and/or Tyr5 residues in dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) and its N-terminal hexapeptide-amide were replaced by delta-Phe or by Phe5 in order to examine the effect on opioid activity. On GPI preparation, the substitution of Phe5 for Tyr5 was well tolerated, whereas the hexa and heptapeptides containing delta Phe in position 3 and/or 5 displayed low potency. The unsaturation at position 3 alone or at positions 3 and 5 was particularly detrimental to mu activity. In the tail flick test, the influence of unsaturation or substitution at positions 3 and 5 generally matched the results of the in vitro assay. Dehydropeptides showed comparatively low antinociceptive effects and [Phe5] analogues displayed about 50% of the analgesic potency of the original peptides.  相似文献   

18.
The effects on CTL recognition of individual amino acid substitutions within epitopes I, II, and III of SV40 tumor Ag (T Ag) were examined. Epitope I spans amino acids 207 to 215, and epitope II/III is within residues 223 to 231 of SV40 T Ag. An amino acid substitution at position 207 (Ala----Val) or 214 (Lys----Glu) of SV40 T Ag expressed in transformed cells resulted in loss of epitope I, recognized by CTL clone Y-1. The amino acid substitution at residue 214 in the corresponding synthetic peptide, LT207-215(214-Lys----Glu), also led to loss of recognition by CTL clone Y-1. The recognition, by CTL clone Y-1, of peptides LT207-215 and LT207-217 with an Ala----Val substitution at position 207 was severely affected. Peptides LT205-215 and LT205-219 with the Ala----Val substitution at residue 207 were, however, recognized by CTL clone Y-1, suggesting that residues 205 and 206 may be involved in presentation of site I. Alteration of residue 224 (Lys----Glu) in the native T Ag resulted in loss of recognition by both CTL clones Y-2 and Y-3. However, a peptide corresponding to epitope II/III with an identical amino acid substitution at residue 224 provided a target for CTL clone Y-3 but not clone Y-2. A change of Lys----Gln at residue 224 in both the native protein and a synthetic peptide caused loss of recognition by CTL clone Y-2 but not CTL clone Y-3. Further, an amino acid substitution of Lys----Arg at position 224 of the native T Ag decreased recognition of epitope II/III by CTL clones Y-2 and Y-3 but had no effect on recognition of a synthetic peptide bearing the same substitution. These results indicate that the mutagenesis approach, resulting in identical amino acid substitutions in the native protein and in the synthetic peptides, may provide insight into the role of individual residues in the processing, presentation, and recognition of CTL recognition epitopes.  相似文献   

19.
The interaction between unsaturated phosphatidylcholines and either exogenous or endogenous (produced by the enzyme system involving myeloperoxidase (MPO), H2 O2 ,and Cl) hypochlorite was studied in multilayer liposomes containing oleic, linoleic, and arachidonic acid residues using MALDI TOF mass spectrometry. At pH 7.4, hypochlorite reacts with the double bond of the oleic acid residue in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine producing oleic acid chlorohydrin as the main product. Minor amounts of glycols and epoxides were also detected. The main products of the reaction of hypochlorite with 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were mono and di chlorohydrins of linoleic acid. The signals of monoglycol, epoxide, and glycol or epoxide containing monochlorohydrin derivatives were also present in the mass spectrum. The main products of the reaction of hypochlorite with 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were lysophosphatidylcholine (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) and mono-, di-, and trichlorohydrin. Monoglycol and its derivatives containing one or two chlorohydrin groups were also detected. Along with those, carbonyl compounds (aldehyde and acid) formed as a result of double bond breakage in fifth position of arachidonate were detected. Monochlorohydrin was also found when liposomes comprising 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were incubated in the presence of enzymatic mixture, MPO +H2 O2 +Cl,at pH 6.0. In the absence of the enzyme or either of its substrates (H2 O2 or Cl) or in the presence of the MPO inhibitor (sodium azide) or hypochlorite scavengers (taurine or methionine), monochlorohydrin formation was not observed. These data confirm the suggestion that just the hypochlorite generated in MPO catalysis provides for chlorohydrin formation. Thus, the use of MALDI TOF mass spectrometry has shown, along with chlorohydrins, glycols and epoxides as the products of hypochlorite interaction with unsaturated phosphatidylcholines at physiological pH. It was first determined that hypochlorite breaks double bonds in polyunsaturated phosphatidylcholine and also causes lysophosphatidylcholine formation.  相似文献   

20.
The activation of delipidated microsomal UDP-glucuronosyltransferase from pig liver (GT2P type of enzyme) was studied as a function of several structural modifications of 1-palmitoyl-sn-glycero-3-phosphocholine, which is known to be a good activator of the enzyme. The following types of compounds were tested: substitution of H for OH at position 2; substitution of an ether for an acyl link at position 1; variation of the phosphorus-nitrogen or acyl ester-phosphate ester distances; removal of the glycerol backbone; optical isomers; and substitution of phosphoethanolamine for phosphocholine. Although there were variations in the extent to which these compounds activated delipidated enzyme, all the above types of lipids were effective in this regard. By contrast, lipids with a net negative charge did not activate the enzyme. They inhibited it reversibly. Positively charged lipids, even those lacking a phosphate group, were effective activators. These results indicate that GT2P is unlikely to interact with specific chemical groups of its phospholipid milieu. Effective activation appears instead to depend on the physical properties of the lipid environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号