首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pokeweed antiviral protein (PAP), a single chain ribosome-inactivating protein (RIP) isolated from pokeweed plants (Phytolacca americana), removes specific adenine and guanine residues from the highly conserved, alpha-sarcin/ricin loop in the large rRNA, resulting in inhibition of protein synthesis. We recently demonstrated that PAP could also inhibit translation of mRNAs and viral RNAs that are capped by binding to the cap structure and depurinating the RNAs downstream of the cap. Cell growth is inhibited when PAP cDNA is expressed in the yeast Saccharomyces cerevisiae under the control of the galactose-inducible GAL1 promoter. Here, we show that overexpression of wild type PAP in yeast leads to a decrease in PAP mRNA abundance. The decrease in mRNA levels is not observed with an active site mutant, indicating that it is due to the N-glycosidase activity of the protein. PAP expression had no effect on steady state levels of mRNA from four different endogenous yeast genes examined, indicating specificity. We demonstrate that PAP can depurinate the rRNA in trans in a translation-independent manner. When rRNA is depurinated and translation is inhibited, the steady state levels of PAP mRNA increase dramatically relative to the U3 snoRNA. Using a PAP variant which depurinates rRNA, inhibits translation but does not destabilize its mRNA, we demonstrate that PAP mRNA is destabilized after its levels are up-regulated by a mechanism that occurs independently of rRNA depurination and translation. We quantify the extent of rRNA depurination in vivo using a novel primer extension assay and show that the temporal pattern of rRNA depurination is similar to the pattern of PAP mRNA destabilization, suggesting that they may occur by a common mechanism. These results provide the first in vivo evidence that a single chain RIP targets not only the large rRNA but also its own mRNA. These findings have implications for understanding the biological function of RIPs.  相似文献   

3.
Pokeweed antiviral protein (PAP) is a type I ribosomal inactivating protein (RIP). PAP binds to and depurinates the sarcin/ricin loop (SRL) of ribosomal RNA resulting in the cessation of protein synthesis. PAP has also been shown to bind to mRNA cap analogs and depurinate mRNA downstream of the cap structure. The biological role of cap binding and its possible role in PAP activity are not known. Here we show the first direct quantitative evidence for PAP binding to the cap analog m(7)GTP. We report a binding affinity of 43.3+/-0.1 nM at 25 degrees C as determined by fluorescence quenching experiments. This is similar to the values reported for wheat cap-binding proteins eIFiso4E and eIFiso4F. van't Hoff analysis of m(7)GTP-PAP equilibrium reveals a binding reaction that is enthalpy driven and entropy favored with TDeltaS degrees contributing 15% to the overall value of DeltaG degrees . This is in contrast to the wheat cap-binding proteins which are enthalpically driven in the DeltaG degrees for binding. Competition experiments indicate that ATP and GTP compete for the cap-binding site on PAP with slightly different affinities. Fluorescence studies of PAP-eIFiso4G binding reveal a protein-protein interaction with a K(d) of 108.4+/-0.3 nM. eIFiso4G was shown to enhance the interaction of PAP with m(7)GTP cap analog by 2.4-fold. These results suggest the involvement of PAP-translation initiation factor complexes in RNA selection and depurination.  相似文献   

4.
Parikh BA  Baykal U  Di R  Tumer NE 《Biochemistry》2005,44(7):2478-2490
Pokeweed antiviral protein (PAP) is a single-chain ribosome inactivating protein (RIP) that binds to ribosomes and depurinates the highly conserved alpha-sarcin/ricin loop (SRL) of the large subunit rRNA. Catalytic depurination of a specific adenine has been proposed to result in translation arrest and cytotoxicity. Here, we show that both precursor and mature forms of PAP are localized in the endoplasmic reticulum (ER) in yeast. The mature form is retro-translocated from the ER into the cytosol where it escapes degradation unlike the other substrates of the retro-translocation pathway. A mutation of a highly conserved asparagine residue at position 70 (N70A) delays ribosome depurination and the onset of translation arrest. The ribosomes are eventually depurinated, yet cytotoxicity and loss of viability are markedly absent. Analysis of the variant protein, N70A, does not reveal any decrease in the rate of synthesis, subcellular localization, or the rate of transport into the cytosol. N70A destabilizes its own mRNA, binds to cap, and blocks cap dependent translation, as previously reported for the wild-type PAP. However, it cannot depurinate ribosomes in a translation-independent manner. These results demonstrate that N70 near the active-site pocket is required for depurination of cytosolic ribosomes but not for cap binding or mRNA destabilization, indicating that the activity of PAP on capped RNA can be uncoupled from its activity on rRNA. These findings suggest that the altered active site of PAP might accommodate a narrower range of substrates, thus reducing ribotoxicity while maintaining potential therapeutic benefits.  相似文献   

5.
6.
Mazza C  Segref A  Mattaj IW  Cusack S 《The EMBO journal》2002,21(20):5548-5557
The heterodimeric nuclear cap-binding complex (CBC) binds to the 5' cap structure of RNAs in the nucleus and plays a central role in their diverse maturation steps. We describe the crystal structure at 2.1 A resolution of human CBC bound to an m(7)GpppG cap analogue. Comparison with the structure of uncomplexed CBC shows that cap binding induces co-operative folding around the dinucleotide of some 50 residues from the N- and C-terminal extensions to the central RNP domain of the small subunit CBP20. The cap-bound conformation of CBP20 is stabilized by an intricate network of interactions both to the ligand and within the subunit, as well as new interactions of the CBP20 N-terminal tail with the large subunit CBP80. Although the structure is very different from that of other known cap-binding proteins, such as the cytoplasmic cap-binding protein eIF4E, specificity for the methylated guanosine again is achieved by sandwiching the base between two aromatic residues, in this case two conserved tyrosines. Implications for the transfer of capped mRNAs to eIF4E, required for translation initiation, are discussed.  相似文献   

7.
This is the first structural evidence of recognition of mRNA cap structures by a ribosome inactivating protein. It is well known that a unique cap structure is formed at the 5′ end of mRNA for carrying out various processes including mRNA maturation, translation initiation, and RNA turnover. The binding studies and crystal structure determinations of type 1 ribosome inactivating protein (RIP‐1) from Momordica balsamina (MbRIP‐1) were carried out with mRNA cap structures including (i) N7‐methyl guanine (m7G), (ii) N7‐methyl guanosine diphosphate (m7GDP), and (iii) N7‐methyl guanosine triphosphate (m7GTP). These compounds showed affinities to MbRIP‐1 at nanomolar concentrations. The structure determinations of the complexes of MbRIP‐1 with m7G, m7GDP, and m7GTP at 2.65, 1.77, and 1.75 Å resolutions revealed that all the three compounds bound to MbRIP‐1 in the substrate binding site at the positions which are slightly shifted towards Glu85 as compared to those of rRNA substrates. In this position, Glu85 forms several hydrogen bonds with guanine moiety while N‐7 methyl group forms van der Waals contacts. However, the guanine rings are poorly stacked in these complexes. Thus, the mode of binding by MbRIP‐1 to mRNA cap structures is different which results in the inhibition of depurination. Since some viruses are known to exploit the capping property of the host, this action of MbRIP‐1 may have implications for the antiviral activity of this protein in vivo. The understanding of the mode of binding of MbRIP‐1 to cap structures may also assist in the design of anti‐viral agents. Proteins 2012. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
A series of new dinucleotide cap analogs with methylene groups replacing oxygens within the pyrophosphate moieties have been synthesized. All the compounds were resistant to the human scavenger decapping hydrolase, DcpS. Binding constants of the modified caps to eIF4E are comparable to those obtained for m7GpppG. This suggests these methylene modifications in the pyrophosphate chain do not significantly affect cap-binding at least for eIF4E. These cap analogs are also good inhibitors of in vitro translation. mRNAs capped with novel analogs were translated similarly to the mRNA capped with the parent m7GpppG.  相似文献   

11.
The occurrence of translation mechanism in the cytosol offers advantages to mRNA transfer over DNA-based transfection in non-dividing cells. Here, we sought to optimize mRNA constructs allowing a high level of protein upon lipofection. We found that luciferase into mouse dendritic cells (JAWSII cells) was approximately 20-fold higher when the luciferase mRNA was capped with 3'-O-methyl-m7(5')Gppp5'G (anti-reverse cap analogue; ARCA) than with m7(5')Gppp5'G (CAP). Adding a Poly(A) tail of 100 instead of 64 adenosines in cis increased by approximately 35-fold more the protein level. Finally, ARCA-Luc-mRNA-A100 construct was 700-fold better efficient than the CAP-Luc-mRNA-A64 one. Moreover, co-transfection with free Poly(A) chains in trans enhanced by 100% the luciferase level. The efficiency of ARCA-mRNA-A100 construct was validated in immature and mature human CD34-derived dendritic cells. Such mRNA construct was also successful to obtain high level of MART-1 tumor antigen.  相似文献   

12.
Eukaryotic cells utilize DcpS, a scavenger decapping enzyme, to degrade the residual cap structure following 3'-5' mRNA decay, thereby preventing the premature decapping of the capped long mRNA and misincorporation of methylated nucleotides in nucleic acids. We report the structures of DcpS in ligand-free form and in a complex with m7GDP. apo-DcpS is a symmetric dimer, strikingly different from the asymmetric dimer observed in the structures of DcpS with bound cap analogues. In contrast, and similar to the m7GpppG-DcpS complex, DcpS with bound m7GDP is an asymmetric dimer in which the closed state appears to be the substrate-bound complex, whereas the open state mimics the product-bound complex. Comparisons of these structures revealed conformational changes of both the N-terminal swapped-dimeric domain and the cap-binding pocket upon cap binding. Moreover, Tyr273 in the cap-binding pocket displays remarkable conformational changes upon cap binding. Mutagenesis and biochemical analysis suggest that Tyr273 seems to play an important role in cap binding and product release. Examination of the crystallographic B-factors indicates that the N-terminal domain in apo-DcpS is inherently flexible, and in a dynamic state ready for substrate binding and product release.  相似文献   

13.
14.
Cap-dependent deadenylation of mRNA   总被引:17,自引:0,他引:17       下载免费PDF全文
Poly(A) tail removal is often the initial and rate-limiting step in mRNA decay and is also responsible for translational silencing of maternal mRNAs during oocyte maturation and early development. Here we report that deadenylation in HeLa cell extracts and by a purified mammalian poly(A)-specific exoribonuclease, PARN (previously designated deadenylating nuclease, DAN), is stimulated by the presence of an m(7)-guanosine cap on substrate RNAs. Known cap-binding proteins, such as eIF4E and the nuclear cap-binding complex, are not detectable in the enzyme preparation, and PARN itself binds to m(7)GTP-Sepharose and is eluted specifically with the cap analog m(7)GTP. Xenopus PARN is known to catalyze mRNA deadenylation during oocyte maturation. The enzyme is depleted from oocyte extract with m(7)GTP-Sepharose, can be photocross-linked to the m(7)GpppG cap and deadenylates m(7)GpppG-capped RNAs more efficiently than ApppG-capped RNAs both in vitro and in vivo. These data provide additional evidence that PARN is responsible for deadenylation during oocyte maturation and suggest that interactions between 5' cap and 3' poly(A) tail may integrate translational efficiency with mRNA stability.  相似文献   

15.
16.
17.
The m7GpppN cap structure of eukaryotic mRNA is formed by the sequential action of RNA triphosphatase, guanylyltransferase, and (guanine N-7) methyltransferase. In trypanosomatid protozoa, the m7GpppN is further modified by seven methylation steps within the first four transcribed nucleosides to form the cap 4 structure. The RNA triphosphatase and guanylyltransferase components have been characterized in Trypanosoma brucei. Here we describe the identification and characterization of a T. brucei (guanine N-7) methyltransferase (TbCmt1). Sequence alignment of the 324-amino acid TbCmt1 with the corresponding enzymes from human (Hcm1), fungal (Abd1), and microsporidian (Ecm1) revealed the presence of conserved residues known to be essential for methyltransferase activity. Purified recombinant TbCmt1 catalyzes the transfer of a methyl group from S-adenosylmethionine to the N-7 position of the cap guanine in GpppN-terminated RNA to form the m7GpppN cap. TbCmt1 also methylates GpppG and GpppA but not GTP or dGTP. Mutational analysis of individual residues of TbCmt1 that were predicted-on the basis of the crystal structure of Ecm1--to be located at or near the active site identified six conserved residues in the putative AdoMet- or cap-binding pocket that caused significant reductions in TbCmt1 methyltransferase activity. We also report the identification of a second T. brucei RNA (guanine N-7) cap methyltransferase (named TbCgm1). The 1050-amino acid TbCgm1 consists of a C-terminal (guanine N-7) methyltransferase domain, which is homologous with TbCmt1, and an N-terminal guanylyltransferase domain, which contains signature motifs found in the nucleotidyl transferase superfamily.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号