首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Oxidants such as H(2)O(2) can induce a low level of apoptosis at low concentrations but at higher concentrations cause necrosis. Higher concentrations of H(2)O(2) also inhibit the induction of apoptosis by chemotherapy drugs. One theory is that, at higher concentrations, H(2)O(2) causes direct oxidative inactivation of caspase-3 activity, thus preventing the apoptotic pathway from being used. We find that treatment of recombinant caspase-3 with H(2)O(2) can partially reduce its enzymatic activity: However, the following findings show that this does not occur in the cell. (1) The inhibition by H(2)O(2) of VP-16-induced apoptosis and cellular caspase-3 activity can be overcome by adding inhibitors of poly(ADP-ribose) polymerase (PARP) at sub-stoichiometric concentrations. (2) Delayed addition of H(2)O(2) to VP-16-treated cells prevents additional caspase induction but does not inhibit the caspase activity that has already been generated. (3) H(2)O(2) is a poor inhibitor of caspase-3 activity in cell lysates. (4) Addition of H(2)O(2) to cells inhibits activation of caspase-9, which is required for activation of caspase-3. We conclude that inhibition of caspase-3 activity in the cell occurs indirectly at a step located upstream of caspase-3 activation. H(2)O(2) acts in part by inducing DNA strand breaks and activating PARP, thus depleting the cells of ATP. When this pathway is blocked, even high concentrations of H(2)O(2) can induce caspase-9 and -3 activation and cause apoptosis.  相似文献   

2.
M Meinhard  E Grill 《FEBS letters》2001,508(3):443-446
Protein phosphatases 2C (PP2Cs) exhibit diverse regulatory functions in signalling pathways of animals, yeast and plants. ABI1 is a PP2C of Arabidopsis that exerts negative control on signalling of the phytohormone abscissic acid (ABA). Characterisation of the redox sensitivity of ABI1 revealed a strong enzymatic inactivation by hydrogen peroxide (H2O2) which has recently been implicated as a secondary messenger of ABA signalling. H2O2 reversibly inhibited ABI1 activity in vitro with an IC(50) of approximately 140 microM in the presence of physiological concentrations of glutathione. In addition, ABI1 was highly susceptible to inactivation by phenylarsine oxide (IC(50)=3-4 microM) indicative for the facile oxidation of vicinal cysteine residues. Thus, H2O2 generated during ABA signalling seems to inactivate the negative regulator of the ABA response.  相似文献   

3.
We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.  相似文献   

4.
As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.  相似文献   

5.
We investigated through which mechanisms ceramide increased oxidative damage to induce leukemia HL-60 cell apoptosis. When 5 microm N-acetylsphingosine (C(2)-ceramide) or 20 microm H(2)O(2) alone induced little increase of reactive oxygen species (ROS) generation as judged by the 2'-7'-dichlorofluorescin diacetate method, 20 microm H(2)O(2) enhanced oxidative damage as judged by ROS accumulation, and thiobarbituric acid-reactive substance production after pretreatment with 5 microm C(2)-ceramide at least for 12 h. The treatment with a catalase inhibitor, 3-amino-1h-1,2,4-triazole, increased oxidative damage and apoptosis induced by H(2)O(2), and in contrast, purified catalase inhibited the enhancement of oxidative damage by H(2)O(2) in ceramide-pretreated cells, suggesting that the oxidative effect of ceramide is involved in catalase regulation. Indeed, C(2)-ceramide inhibited the activity of immunoprecipitated catalase and decreased the levels of catalase protein in a time-dependent manner. Moreover, acetyl-Asp-Met-Gln-Asp-aldehyde, which dominantly inhibited caspase-3 and blocked the increase of oxidative damage and apoptosis due to C(2)-ceramide-induced catalase depletion at protein and activity levels. In vitro, active and purified caspase-3, but not caspase-6, -8, and -9, inhibited catalase activity and induced the proteolysis of catalase protein whereas these in vitro effects of caspase-3 were blocked by acetyl-Asp-Met-Gln-Asp-aldehyde. Taken together, it is suggested that H(2)O(2) enhances apoptosis in ceramide-pretreated cells, because ceramide increases oxidative damage by inhibition of ROS scavenging ability through caspase-3-dependent proteolysis of catalase.  相似文献   

6.
The role of tissue transglutaminase 2 (TG2) in cardiac myocyte apoptosis under oxidative stress induced by ischemic injury remains unclear. Here, we investigated the effects of TG2 on apoptosis of cardiomyocytes under oxidative stress. Ectopic expression of TG2 increased caspase-3 activity and calcium overload in cardiomyocytes. Expression levels of TG2 were significantly increased in H(2)O(2)-treated cardiomyocytes. Caspase-3 activity assay demonstrated its considerable correlation with TG2 expression, which supported that caspase-3 inhibitor inhibited the apoptosis induced by the ectopic overexpression of TG2. In addition, the other apoptotic signals, such as caspase-8, cytochrome c, and Bax, were increased dependent with TG2 expression in H(2)O(2)-treated cardiomyocytes. These results indicated that apoptotic signals had a positive correlation with TG2 expression. The decreased expression of phospholipase C (PLC)-δ1 and phospho-PKC in H(2)O(2)-treated cardiomyocytes were rescued by TG2 silencing. Together, our data strongly suggest that oxidative stress up-regulates TG2 expression in cardiomyocytes, leading to apoptosis.  相似文献   

7.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.  相似文献   

8.
In this study, the effect of puerarin on hydrogen peroxide-induced apoptosis in PC12 cells was studied. Exposure of cells to 0.5mM H(2)O(2)may cause significant viability loss and apoptotic rate increase. When c-Myc, Bcl-2 and Bax expression and caspase-3 activity were measured, using Ac-DEVD-AMC as a substrate, the changes in these apoptosis regulatory and effector proteins suggested that the elevation of c-Myc, decrease in Bcl-2:Bax protein ratio, and caspase-3 activation all play a key role in apoptosis. When cells were treated with puerarin prior to 0.5 mM H(2)O(2)treatment, a reduction in viability loss and apoptotic rate was seen. In addition, c-Myc expression decreased and Bcl-2:Bax ratio increased. Puerarin also reduced the H(2)O(2)-induced elevation of caspase-3 activation. These results suggest that puerarin can protect neurons against oxidative stress. It can block apoptosis in its early stages via the regulation of anti- and pro-apoptotic proteins, as well as by the attenuation of caspase-3 activation in H(2)O(2)-induced PC12 cells.  相似文献   

9.
Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes   总被引:2,自引:0,他引:2  
Astrocytic apoptosis may play a role in the central nervous system injury. We previously showed that reperfusion of cultured astrocytes with normal medium after exposure to hydrogen peroxide (H(2)O(2))-containing medium causes apoptosis. This study examines the involvement of the lysosomal enzymes cathepsins B and D in the astrocytic apoptosis. Reperfusion after exposure to H(2)O(2) caused a marked increase in caspase-3 and cathepsin D activities and a marked decrease in cathepsin B activity. Pepstatin A, an inhibitor of cathepsin D, and acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspart-1-aldehyde (Ac-DMQD-CHO), a specific inhibitor of caspase-3, blocked the H(2)O(2)-induced decrease in cell viability and DNA ladder formation in cultured rat astrocytes. The (L-3-trans-(propylcarbamoyl)oxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA074 Me), a specific inhibitor of cathepsin B, did not affect the H(2)O(2)-induced cell injury. On the other hand, CA074 Me decreased cell viability with DNA ladder formation when cultured in the presence of Ac-DMQD-CHO. This caspase-independent apoptosis was attenuated by the addition of the cathepsin D inhibitor pepstatin A. Caspase-3 like activity was markedly inhibited by Ac-DMQD-CHO and partially by pepstatin A. Pepstatin A and CA074 Me inhibited cathepsin B and cathepsin D activities, respectively, in the presence and absence of Ac-DMQD-CHO. These results suggest that cathepsins B and D are involved in astrocytic apoptosis: cathepsin D acts as a death-inducing factor upstream of caspase-3 and the caspase-independent apoptosis is regulated antagonistically by cathepsins B and D.  相似文献   

10.
The inactivation of horseradish peroxidase A2 (HRP-A2) with H2O2 as the sole substrate has been studied. In incubation experiments it was found that the fall in HRP-A2 activity was non-linearly dependent on H2O2 concentrations and that a maximum level of inactivation of approximately 80% (i.e. approximately 20% residual activity) was obtained with 2,000 or more equivalents of H2O2. Further inactivation was only induced at much higher H2O2 concentrations. Spectral changes during incubations of up to 5 days showed the presence of a compound III-like species whose abundance was correlated to the level of resistance observed. Inactivation was pH dependent, the enzyme being much more sensitive under acid conditions. A partition ratio (r1 approximately equals 1,140 at pH 6.5) between inactivation and catalysis was calculated from the data. The kinetics of inactivation followed single exponential time curves and were H2O2 concentration dependent. The apparent maximum rate constant of inactivation was lambdamax=3.56+/-0.07x10(-4)s(-1) and the H2O2 concentration required to give lambdamax/2 was K2=9.94+/-0.52 mM. The relationship lambdamax相似文献   

11.
One of the plausible ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of endogenous antioxidant defense capacity. In this study, we investigated the neuroprotective effect of fucoidan on H(2)O(2)-induced apoptosis in PC12 cells and the possible signaling pathways involved. The results showed that fucoidan inhibited the decrease of cell viability, scavenged ROS formation and reduced lactate dehydrogenase release in H(2)O(2)-induced PC12 cells. These changes were associated with an increase in superoxide dismutase and glutathione peroxidase activity, and reduction in malondialdehyde. In addition, fucoidan treatment inhibited apoptosis in H(2)O(2)-induced PC12 cells by increasing the Bcl-2/Bax ratio and decreasing active caspase-3 expression, as well as enhancing Akt phosphorylation (p-Akt). However, the protection of fucoidan on cell survival, p-Akt, the Bcl-2/Bax ratio and caspase-3 activity were abolished by pretreating with phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In consequence, fucoidan might protect the neurocytes against H(2)O(2)-induced apoptosis via reducing ROS levels and activating PI3K/Akt signaling pathway.  相似文献   

12.
The sensitivity of the membrane-bound hydrogenase of Bradyrhizobium japonicum to inactivation by proteases and membrane-impermeant protein modification reagents was compared under hydrogen versus oxygen. In membrane vesicles, the half-life of enzyme inactivation by trypsin of the H2-reduced enzyme was approximately 10 min, whereas O2-oxidized enzyme was much less sensitive to trypsin inactivation (half-life of over 90 min). Diazobenzene sulfonate (DABS) affected the enzyme activity in a manner similar to proteases. With DABS, the enzyme had a half-life of 2-3 min under H2 versus over 30 min under O2. Experiments in which the gas phase (containing either H2 or O2) available to the membranes was changed prior to the protease or chemical modification treatments indicated that it is the redox state of the enzyme at the time of the treatment which determines the sensitivity of the enzyme to inactivation. The redox-dependent differences in the behavior of the membrane-bound enzyme were attributed to changes in the accessibility of the small (33 kDa) subunit. The kinetics of enzyme inactivation by trypsin, under H2, correlated very well with the degradation of the intact 33-kDa subunit, whereas the large subunit (65 kDa) was rather resistant to proteolytic degradation. DABS treatment was found to decrease the reactivity of the small subunit to its antibody concomitant with enzyme inactivation under H2, but without such an effect on the O2-oxidized enzyme. In contrast to the results with the membrane-bound enzyme, purified dehydrogenase was found to be equally susceptible to inactivation by proteolysis or chemical modification irrespective of whether the treatments were performed under H2 or O2. These results indicate that, in the membrane, hydrogenase undergoes a redox-linked conformational change, whereby the small subunit of the enzyme becomes more accessible to external reagents when the enzyme is in its reduced form.  相似文献   

13.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

14.
Hyperoxia increases H2O2 production by brain in vivo   总被引:9,自引:0,他引:9  
Hyperoxia and hyperbaric hyperoxia increased the rate of cerebral hydrogen peroxide (H2O2) production in unanesthetized rats in vivo, as measured by the H2O2-mediated inactivation of endogenous catalase activity following injection of 3-amino-1,2,4-triazole. Brain catalase activity in rats breathing air (0.2 ATA O2) decreased to 75, 61, and 40% of controls due to endogenous H2O2 production at 30, 60, and 120 min, respectively, after intraperitoneal injection of 3-amino-1,2,4-triazole. The rate of catalase inactivation increased linearly in rats exposed to 0.6 ATA O2 (3 ATA air), 1.0 ATA O2 (normobaric 100% O2) and 3.0 ATA O2 (3 ATA 100% O2) compared with 0.2 ATA O2 (room air). Catalase inactivation was prevented by pretreatment of rats with ethanol (4 g/kg), a competitive substrate for the reactive catalase-H2O2 intermediate, compound I. This confirmed that catalase inactivation by 3-amino-1,2,4-triazole was due to formation of the catalase-H2O2 intermediate, compound I. The linear rate of catalase inactivation allows estimates of the average steady-state H2O2 concentration within brain peroxisomes to be calculated from the formula: [H2O2] = 6.6 pM + 5.6 ATA-1 X pM X [O2], where [O2] is the concentration of oxygen in ATA that the rats are breathing. Thus the H2O2 concentration in brains of rats exposed to room air is calculated to be about 7.7 pM, rises 60% when O2 tension is increased to 100% O2, and increases 300% at 3 ATA 100% O2, where symptoms of central nervous system toxicity first become apparent. These studies support the concept that H2O2 is an important mediator of O2-induced injury to the central nervous system.  相似文献   

15.
Lee HJ  Ban JY  Seong YH 《Life sciences》2005,78(3):294-300
The present study was performed to examine the neuroprotective effects of 5-hydroxytryptamine (5-HT)(3) receptor antagonists against hydrogen peroxide (H(2)O(2))-induced neurotoxicity using cultured rat cortical neurons. Pretreatment of 5-HT(3) receptor antagonists, tropanyl-3,5-dichlorobenzoate (MDL72222, 0.1 and 1 microM) and N-(1-azabicyclo[2.2.2.]oct-3-yl)-6-chloro-4-ethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide hydrochloride (Y25130, 0.5 and 5 microM), significantly inhibited the H(2)O(2) (100 microM)-induced neuronal cell death as assessed by a MTT assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. The protective effects of MDL72222 (1 microM) and Y25130 (5 microM) were completely blocked by the simultaneous treatment with 100 microM 1-phenylbiguanide, a 5-HT(3) receptor agonist, indicating that the protective effects of these compounds were due to 5-HT(3) receptor blockade. In addition, MDL72222 (1 microM) and Y25130 (5 microM) inhibited the H(2)O(2) (100 microM)-induced elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)) and glutamate release, generation of reactive oxygen species (ROS), and caspase-3 activity. These results suggest that the activation of the 5-HT(3) receptor may be partially involved in H(2)O(2)-induced neurotoxicity, by membrane depolarization for Ca(2+) influx. Therefore, the blockade of 5-HT(3) receptor with MDL72222 and Y25130 may ameliorate the H(2)O(2)-induced neurotoxicity by interfering with the increase of [Ca(2+)](c), and then by inhibiting glutamate release, generation of ROS and caspase-3 activity.  相似文献   

16.
目的 研究银杏叶提取物(EGb761)对H2O2所致星形胶质细胞氧化损伤的保护作用。方法 用不同浓度的EGb761预处理细胞,再加入H2O2,通过噻唑蓝(MTT)实验、线粒体跨膜电位(△ψm)及细胞色素C释放实验、DNA损伤实验及半胱氨酰天冬氨酸特异性蛋白酶-3(Caspase-3)活性测定,观察EGb761对细胞存活率、线粒体膜通透性、DNA氧化损伤及Caspase-3活性的影响。结果 EGb761能明显降低Hz02对星形胶质细胞的氧化损伤,提高细胞的存活率;维持线粒体膜的完整性,抑制跨膜电位的耗散和细胞色素C的释放;抑制Caspase-3的活化和DNA的降解。结论 EGb761具有清除活性氧,减轻H2O2所致星形胶质细胞的氧化损伤,对星形胶质细胞有保护作用。  相似文献   

17.
Cadmium (Cd) is a well-known toxic heavy metal that accumulates in the aquatic environment. Cd has been reported to induce oxidative damage and apoptosis. We investigated the regulation mechanism of hydrogen peroxide (H(2)O(2)) on Cd-induced apoptosis. We show that in the gills of the freshwater crab Sinopotamon henanense Cd induced apoptosis, in a time- and concentration-dependent manner, as confirmed by DNA fragmentation analysis and transmission electron microscopy. Additionally, Cd caused production of H(2)O(2) after 2h of treatment at 58mg L(-1) Cd, and significantly increased the caspase-3/8/9 activity in crabs relative to the control group. Pre-treatment with the scavenger for H(2)O(2), dimethylthiourea (DMTU) and antioxidant, N-acetyl cysteine (NAC), effectively inhibited the activities of caspase-3 and caspase-9, eventually blocked Cd-induced DNA fragmentation and the appearance of markers for apoptotic cell death. These results suggest that Cd might induce intracellular H(2)O(2) generation to trigger the crab apoptotic processes by regulating the activities of caspase enzymes.  相似文献   

18.
The exchange-inert tetra-ammino-chromium complex of ATP [Cr(NH3)4ATP], unlike the analogous cobalt complex Co(NH3)4ATP, inactivated Na+/K(+)-ATPase slowly by interacting with the high-affinity ATP binding site. The inactivation proceeded at 37 degrees C with an inactivation rate constant of 1.34 x 10(-3) min-1 and with a dissociation constant of 0.62 microM. To assess the potential role of the water ligands of metal in binding and inactivation, a kinetic analysis of the inactivation of Na+/K(+)-ATPase by Cr(NH3)4ATP, and its H2O-substituted derivatives Cr(NH3)3(H2O)ATP, Cr(NH3)2(H2O)2ATP and Cr(H2O)4ATP was carried out. The substitution of the H2O ligands with NH3 ligands increased the apparent binding affinity and decreased the inactivation rate constants of the enzyme by these complexes. Inactivation by Cr(H2O)4ATP was 29-fold faster than the inactivation by Cr(NH3)4ATP. These results suggested that substitution to Cr(III) occurs during the inactivation of the enzyme. Additionally hydrogen bonding between water ligands of metal and the enzyme's active-site residues does not seem to play a significant role in the inactivation of Na+/K(+)-ATPase by Cr(III)-ATP complexes. Inactivation of the enzyme by Rh(H2O)nATP occurred by binding of this analogue to the high-affinity ATP site with an apparent dissociation constant of 1.8 microM. The observed inactivation rate constant of 2.11 x 10(-3) min-1 became higher when Na+ or Mg2+ or both were present. The presence of K+ however, increased the dissociation constant without altering the inactivation rate constant. High concentrations of Na+ reactivated the Rh(H2O)nATP-inactivated enzyme. Co(NH3)4ATP inactivates Na+/K(+)-ATPase by binding to the low-affinity ATP binding site only at high concentrations. However, inactivation of the enzyme by Cr(III)-ATP or Rh(III)-ATP complexes was prevented when low concentrations of Co(NH3)4ATP were present. This indicates that, although Co(NH3)4ATP interacts with both ATP sites, inactivation occurs only through the low-affinity ATP site. Inactivation of Na+/K(+)-ATPase was faster by the delta isomer of Co(NH3)4ATP than by the delta isomer. Co(NH3)4ATP, but not Cr(H2O)4ATP or adenosine 5'-[beta,gamma-methylene]triphosphate competitively inhibited K(+)-activated p-nitrophenylphosphatase activity of Na+/K(+)-ATPase, which is assumed to be a partial reaction of the enzyme catalyzed by the low-affinity ATP binding site.  相似文献   

19.
Luo P  Chen T  Zhao Y  Xu H  Huo K  Zhao M  Yang Y  Fei Z 《Free radical research》2012,46(6):766-776
Oxidative stress-induced cell damage is involved in many neurological diseases. Homer protein, as an important scaffold protein at postsynaptic density, regulates synaptic structure and function. Here, we reported that hydrogen peroxide (H(2)O(2)) induced the expression of Homer 1a. Down-regulation of Homer 1a with a specific small interfering RNA (siRNA) exacerbated H(2)O(2)-induced cell injury. Up-regulation of Homer 1a by lentivirus transfection did not affect the anti-oxidant activity, but significantly reduced the reactive oxygen species (ROS) production and lipid peroxidation after H(2)O(2)-induced oxidative stress. Overexpression of Homer 1a attenuated the loss of mitochondrial membrane potential (MMP) and ATP production induced by H(2)O(2), and subsequently inhibited mitochondrial dysfunction-induced cytochrome c release, increase of Bax/Bcl-2 ratio and caspase-9/caspase-3 activity. Furthermore, in the presence of BAPTA-AM, an intracellular free-calcium (Ca(2+)) chelator, overexpression of Homer 1a had no significant effects on H(2)O(2)-induced oxidative stress. These results suggest that Homer 1a has protective effects against H(2)O(2)-induced oxidative stress by reducing ROS accumulation and activation of mitochondrial apoptotic pathway, and these protective effects are dependent on the regulation of intracellular Ca(2+) homeostasis.  相似文献   

20.
李涛  姜科声  阮琴  刘志强 《生物工程学报》2012,28(10):1253-1264
为研究心脏发育关键基因nkx2.5的功能及应用价值,构建Ad-Nkx2.5重组腺病毒,并检测nkx2.5过表达拮抗氧化应激损伤的效应及机制。采用AdEasy腺病毒表达系统构建Ad-Nkx2.5重组腺病毒,建立H2O2诱导H9c2心肌细胞凋亡模型,分别用Ad-Nkx2.5重组病毒或对照病毒感染细胞,采用Hoechst33342染色观察细胞形态变化、MTT法检测细胞存活率,免疫印迹检测caspase-3活化、细胞色素C的胞浆含量。并通过Real-timePCR检测凋亡相关基因bcl-2和bax表达。结果发现,nkx2.5过表达促进H9c2细胞存活,抑制H2O2诱导的caspase-3活化及线粒体细胞色素C的释放。Nkx2.5过表达上调bcl-2表达,显著下调H2O2诱导的bax表达。并发现H2O2对Nkx2.5核定位无明显影响。结果显示重组腺病毒介导的Nkx2.5过表达可通过调控凋亡相关基因表达,抑制线粒体凋亡途径,保护心肌细胞抗氧化损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号