首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peanut (Arachis hypogaea L. ) seed powder accumulated ATP fromAMP and phosphoenolpyruvate (PEP) at a rate of approx. 100 pmolmin–1mg powder at 35° C. When peanut seed powderwas incubated with various substrates, which may result in PEPor AMP (ADP) synthesis, then ATP accumulated. The best substratecombinations examined so far were AMP + succinate, NADH2, andAMP + malate + NAD, with activities of 33, 12 and 12 pmol minmg–1powder,respectively; AMP + malate showed very low activity. Some combinationsexhibited linear activities with time, while others had an exponential-typeprofile. The temperature dependence of the ATP accumulationdemonstrated by the Ahrrenius plot had a double phase with atransition point at 25° C. The Ea values between 15°C and 25° C were 25 000–50 000 cal/mol, while above25° C the Ea values fluctuated between 6000 and 8000 cal/mol(depending on the substrate). The AMP + PEP combination exhibiteda single-phase profile between 15° C and 40° C, withan Ea value of 22 000 cal/mol. In the presence of some substrates,ethephon (ethylene) had a stimulatory effect and caused an increasein the Ea values at the high temperature phase. A comparisonof seed powder from dormant seeds with that from non-dormantseeds revealed that some substrate combinations accumulate ATPfaster in non-dormant seeds and others do so in dormant seeds. Key words: Arachis hypogaea, ATP, Ethylene, Dormancy, Peanut, Seed  相似文献   

2.
Developing soybean seeds contain phosphoenolpyruvate (PEP) carboxylase,pyruvic kinase, malate dehydrogenase, aspartate aminotransferase,alanine aminotransferase and malic enzyme activities. PEP carboxylasemay be important in competing with pyruvic kinase and directinga portion of glycolytic carbon towards oxaloacetate synthesis.The oxaloacetate can then be converted to aspartate and malate.Malic enzyme produces pyruvate and NADPH from malate, and thismay be an important additional source of reducing power forlipid biosynthesis. In the presence of high levels of PEP carboxylaseit is possible to demonstrate PEP formation by pyruvic kinase.PEP carboxylase and pyruvic kinase independently compete forPEP in a mixed system. Soybean seed extracts readily convertedradioactive PEP into alanine and aspartate when supplementedwith ADP, Mg2+, K+, HCO3– and glutamate. Under varyingconditions of pH, metal ions, PEP, enzyme concentration andtime both alanine and aspartate were always produced. Possiblythe final products of glycolysis should be considered as pyruvateand oxaloacetate in plants. (Received April 22, 1981; Accepted June 26, 1981)  相似文献   

3.
The mechanism of C4 acid decarboxylation was studied in bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate carboxykinase (PCK)-type C4 plant. Added malate was decarboxylated to give pyruvate and this activity was often increased by adding ADP. Added oxaloacetate or aspartate plus 2-oxoglutarate (which produce oxaloacetate via aspartate aminotransferase) gave little metabolic decarboxylation alone but with added ATP there was a rapid production of PEP. For this activity ADP could replace ATP but only when added in combination with malate. In addition, the inclusion of aspartate plus 2-oxoglutarate with malate plus ADP often increased the rate of pyruvate production from malate by more than twofold. Experiments with respiratory chain inhibitors showed that the malate-dependent stimulation of oxaloacetate decarboxylation (PEP production) was probably due to ATP generated during the oxidation of malate in mitochondria. We could provide no evidence that photophosphorylation could serve as an alternative source of ATP for the PEP carboxykinase reaction. We concluded that both PEP carboxykinase and mitochondrial NAD-malic enzyme contribute to C4 acid decarboxylation in these cells, with the required ATP being derived from oxidation-linked phosphorylation in mitochondria.  相似文献   

4.
Cell-free extracts of peanut (Arachis hypogaea L., cv. Shulamit)seeds, incubated with various substrates, synthesized ATP. Significantsynthesis occurred in the presence of AMP + PEP, NADH2 + PEPand NAD + PEP. When the activities were examined in extractsprepared with 0.3 M mannitol, the rates were 0.6, 0.1 and 0.04nmol min–1 mg–1 protein, respectively. The activitiesunder such conditions were linear with time up to 90 min incubationat 30 °C. In the presence of PEP + NADH2 there was a higherspecific activity in extracts from non-dormant seeds than fromdormant seeds. No such difference was found when PEP + AMP orNAD + PEP was used as the substrate. The temperature dependenceof the activity showed a relatively high energy of activation(Ea) for AMP + PEP and a low one if NADH2 + PEP or NAD + PEPwas used as substrate. In buffer extracts of seeds ATP was synthesizedin the presence of the above-mentioned substrate combinationsbut the rate of activity exhibited a lag phase at the earlytime of incubation, after which higher rates of activities (ascompared with mannitol extracts) were obtained. The activitieswere Co+-dependent, with a Km of about 0.7 mM. In the bufferextracts relatively high activities of adenylate kinase (EC2.7.4.3 [EC] (AK) and pyruvate kinase (EC 2.7.1.50 [EC] ) (PK) were found.AK was stimulated by ethephon (ethylene). This effect is temperature-dependentand occurs in both directions: in the presence of ADP (ATP +AMP) as well as if ATP + AMP is used as substrate to synthesizeADP. PK is Co+-dependent, and unaffected by ethephon. Both activitieswere stimulated by malonate. Key words: Adenylate Kinase, Arachis hypogaea, ATP synthesis, Peanut, Pyruvate kinase, Seed  相似文献   

5.
The rate of phosphoenolpyruvate carboxylation by extracts from germinating lupin seeds was measured through the H14CO3 fixation. PEP carboxylation in seed axes increased during their imbibition, mainly as a result of the increase in the activity of PEP carboxylase [EC 4.1.1.31]. However, the activity of PEP carboxykinase [EC 4.1.1.38], present during the first 3 hours of imbibition, as well as the activity of PEP-carboxykinase [EC 4.1.1.49], after 24 hours of imbibition, have also been shown. Possible physiological role of the changes in the activity of PEP carboxylases during lupin seeds germination is discussed.  相似文献   

6.
Under in vitro conditions, the fatty acid synthesis from labelled substrates was studied in the leucoplasts isolated from developing seeds of Brassica campestris L. The rate of fatty acid synthesis with Na-(1-14C) acetate was higher at lower concentrations (up to 1 mM). However, with 14C(U)-D-glucose, the rate was higher at higher concentrations (3–4 mM) at all the three stages of seed development. ATP and NAD(P)H were absolutely required in acetate utilization. Even for glucose utilization, the exogenous supply of ATP and NAD(P)H was required. At the early stage of seed development, the maximum reduction in labelled glucose and acetate utilization for fatty acid synthesis was observed with pyruvate and glucose, respectively. However, at mid-early and mid-late stages, maximum reduction in their utilization for fatty acid synthesis was observed with glc-6-P. This suggests a shift in the utilization of substrates for fatty acid synthesis during the development of seeds probably via different translocators activated at different stages.  相似文献   

7.
M. Perl 《Planta》1980,149(1):1-6
Using onion seed powder, a semi-in vitro system for ATP synthesis in seeds has been developed. The system requires AMP, phosphoenolpyruvate (PEP) and orthophosphate with apparent Km values of 0.8, 1.5 and 3.0 mM, respectively. ATP synthesis is pH-dependent with a sharp optimum at pH 6.4, it exhibits linearity with time up to 40 min, and with a seed powder concentration between 25 and 150 mg ml-1. The system is stimulated by low concentrations (<25 mM) of K+ and Mg2+ but is inhibited by higher concentrations of K+ and Mg2+ as well as by low concentrations of Li+, Na+ and especially Ca2+. The maximal rate is about 5 pmol min-1 mg seed powder-1 in dry onion seeds. During seed imbibition the rate of activity increases by about 120% after 3 h, reaching a plateau which is steady up to 18 h, when the radicle emerges. A comparison of the ATP content in seeds during the early period of imbibition with the capacity of ATP synthesis at this stage reveals that the described system could provide, during germination, 100 times more ATP than that found in imbibed seeds. The system is shown to be present in ten different types of seeds.  相似文献   

8.
Maltman DJ  Gadd SM  Simon WJ  Slabas AR 《Proteomics》2007,7(9):1513-1528
The endoplasmic reticulum is a major compartment of storage protein and lipid biosynthesis. Maximal synthesis of these storage compounds occurs during seed development with breakdown occurring during germination. In this study, we have isolated four independent preparations of ER from both developing and germinating seeds of castor bean (Ricinus communis) and used 2-D DIGE, and a combination of PMF and MS/MS sequencing, to quantify and identify differences in protein complement at both stages. Ninety protein spots in the developing seeds are up-regulated and 19 individual proteins were identified, the majority of these are intermediates of seed storage synthesis and protein folding. The detection of these transitory storage proteins in the ER is discussed in terms of protein trafficking and processing. In germinating seed ER 15 spots are elevated, 5 of which were identified, amongst them was malate synthetase which is a component of the glyoxysome which is believed to originate from the ER. Notably no proteins involved in complex lipid biosynthesis were identified in the urea soluble ER fraction indicating that they are probably all integral membrane proteins.  相似文献   

9.
M. Perl  D. Globerson 《Phytochemistry》1981,20(9):2289-2290
During the ripening of lettuce seeds, ATP, AMP + ADP, and moisture decrease to very low levels, and the ability to produce ATP from AMP + PEP (phosphoenolpyruvate) and the PEP-carboxylase (EC 4.1.1.38) activity is diminished. Malate dehydrogenase (EC 1.1.1.37) and pyruvate kinase (PK) (EC 2.7.1.40) decreased up to 10 days after anthesis, after which a sharp increase occurred.  相似文献   

10.
Seeds of various species were treated with polyethyleneglycolin the absence or presence of AMP and phosphoenolpyruvate, redriedand examined for ATP accumulation at the early stage of germinationand for the rate of germination under suboptimal temperatures.The pretreatments resulted in seeds with various levels of accumulatedATP but in most comparative experiments no correlation was foundbetween the ATP accumulation and the rate of germination. Similarpretreatments with naturally aged seeds led to the same conclusion.The fact that ATP accumulation is a result of ATP synthesisas well as ATP utilization was demonstrated by a protein inhibitionexperiment which showed a possibility to produce seeds withrelatively high ATP accumulation levels at the early stage ofgermination, but with very low germination ability. Key words: AMP, PEP, Polyethyleneglycol, Pretreatment  相似文献   

11.
Pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was partially purified from cotton seeds. The enzyme shows normal kinetics toward phosphoenol-pyruvate, ADP, and magnesium or manganese. Of nearly 50 metabolites tested, the enzyme is inhibited only by ATP, UTP, citrate, and malate, and activated by AMP, GMP, and fumarate. The inhibition by citrate and ATP is not due to metal chelation; both compounds appear to directly affect the enzyme. The kinetics of the activations by AMP and by fumarate suggest the existence of separate activator sites for the two compounds.It is suggested that cotton seed pyruvate kinase is a regulatory enzyme, although it differs markedly from the regulatory pyruvate kinases which have been described in animals and in microorganisms. This is the first instance in which regulatory properties have been reported for a pyruvate kinase from a higher plant.  相似文献   

12.
The rate and final percentage of field emergence (seed quality)was measured in 55 seed-lots of carrots (Daucus carota L.),45 seed-lots of onion (Allium cepa L.) and 32 seed-lots of cabbage(Brassica oleracea var. capitata), together with the followingbiochemical indices: rates of ATP-synthesis; reduction of tetrazoliumby seed powder; AMP and malate content. Differences in field performance of seed-lots (seed quality)showed some correlation with particular biochemical indices.Seed quality was most significantly correlated with AMP contentand ATP synthesis in carrot, with malate content, reductionof tetrazolium and ATP synthesis in onion and with malate andAMP content and reduction of tetrazolium in cabbage. Daucus carota L., Allium cepa L., Brassica oleracea var capitata, carrot, onion, seed quality, ATP, biochemical indices  相似文献   

13.
In this study some aspects of organic and amino acid metabolism in cherry endocarp and seed were investigated during their development. The abundance and location of a number of enzymes involved in these processes were investigated. These enzymes were aspartate aminotransferase (AspAT; EC:2.6.1.1), glutamine synthetase (GS; EC:6.3.1.2), phosphoenolpyruvate carboxylase (PEPC; EC:4.1.1.31), phosphoenolpyruvate carboxykinase (PEPCK; EC:4.1.1.49), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC:4.1.1.39). There was a transient and massive accumulation of vegetative storage proteins in the endocarp. These proteins were remobilised as the endocarp lignified and at the same time that proteins were accumulated in the seed. This raised the possibility that a proportion of imported amino acids were temporarily stored in the endocarp as protein, and that these were later utilised by the seed when it started to accumulate storage proteins. Rubisco was present in the embryo and integuments of the seed although no chlorophyll was present. This is the first time that Rubisco has been detected in non-green seeds. The maximum abundance of Rubisco in the seed coincided with the deposition of seed storage proteins. A possible function for Rubisco in cherry seed is discussed. PEPCK was located in the integuments and appeared when seed storage proteins were being accumulated. In the integuments and embryo AspAT, GS, PEPC and Rubisco also appeared, or greatly increased in abundance, when seed storage proteins were being deposited.  相似文献   

14.
M. Perl 《Planta》1978,139(3):239-243
Cotton (Gossypium hirsutum) seeds and Sorghum vulgare caryopses are able to incorporate CO2 through a PEP-carboxylating enzyme (EC 4.1.1.38). The enzyme activity is optimal at pH 8.2 and is unaffected by ATP, GDP or acetyl CoA. The partially purified cotton enzyme is stimulated by inorganic phosphate with an apparent Km of 0.3 mM. The enzymes from both cultivars are inhibited by pyrophosphate, malate, and aspartate but not by succinate. Kinetic studies for Sorghum and cotton seed enzymes show apparent Km values for carbonate of 5 mM and 1.2 mM and for PEP of 36 M and 5 mM, respectively. The Vmax values are 90 and 3.3 nmol min-1 mg protein-1, respectively.A two-fold increase in the enzyme activity from cotton seeds occurs after 2 h under laboratory germination conditions after which the activity drops sharply to 1/3 of the original activity after 5 h imbibition. No such change was observed in Sorghum caryopses enzyme. A correlation between PEP-carboxylase activity and seed vigor in both cultivars was demonstrated.Abbreviations GOT glutamicoxaloacetic-transaminase - MDH malic dehydrogenase-NADH2 - RH relative humidity  相似文献   

15.
Proteomics of Arabidopsis seeds revealed the differential accumulation during germination of two housekeeping enzymes. The first corresponded to methionine synthase that catalyses the last step in the plant methionine biosynthetic pathway. This protein was present at low level in dry mature seeds, and its level was increased strongly at 1-day imbibition, prior to radicle emergence. Its level was not increased further at 2-day imbibition, coincident with radicle emergence. However, its level in 1-day imbibed seeds strongly decreased upon subsequent drying of the imbibed seeds back to the original water content of the dry mature seeds. The second enzyme corresponded to S -adenosylmethionine synthetase that catalyses the synthesis of S -adenosylmethionine from methionine and ATP. In this case, this enzyme was detected in the form of two isozymes with different p I and M r. Both proteins were absent in dry mature seeds and in 1-day imbibed seeds, but specifically accumulated at the moment of radicle protrusion. Arabidopsis seed germination was strongly delayed in the presence of dl -propargylglycine, a specific inhibitor of methionine synthesis. Furthermore, this compound totally inhibited seedling growth. These phenotypic effects were largely alleviated upon methionine supplementation in the germination medium. The results indicated that methionine synthase and S -adenosylmethionine synthetase are fundamental components controlling metabolism in the transition from a quiescent to a highly active state during seed germination. Moreover, the observed temporal patterns of accumulation of these proteins are consistent with an essential role of endogenous ethylene in Arabidopsis only after radicle protrusion.  相似文献   

16.
Proteomics is increasingly being used to understand enzyme expression and regulatory mechanisms involved in the accumulation of storage reserves in crops with sequenced genomes. During the past six years, considerable progress has been made to characterize proteomes of both mature and developing seeds, particularly oilseeds - plants which accumulate principally oil and protein as storage reserves. This review summarizes the emerging proteomics data, with emphasis on seed filling in soy, rapeseed, castor and Arabidopsis as each of these oilseeds were analyzed using very similar proteomic strategies. These parallel studies provide a comprehensive view of source-sink relationships, specifically sucrose assimilation into organic acid intermediates for de novo amino acid and fatty acid synthesis. We map these biochemical processes for seed maturation and illustrate the differences and similarities among the four oilseeds. For example, while the four oilseeds appear capable of producing cytosolic phosphoenolpyruvate as the principal carbon intermediate, soybean and castor also express malic enzymes and malate dehydrogenase, together capable of producing malate that has been previously proposed to be the major intermediate for fatty acid synthesis in castor. We discuss these and other differences in the context of intermediary metabolism for developing oilseeds.  相似文献   

17.
Fernand G. P  ron  Charles P. W. Tsang 《BBA》1969,180(3):445-458
Pyruvate and pyruvate plus ATP have been shown to support 11β-hydroxylation of 11-deoxycorticosterone into corticosterone in incubated rat adrenal gland mitochondria. Corticosterone production with pyruvate plus ATP was not as great as with malate plus Pi, malate plus ATP or malate plus pyruvate. Respiratory chain inhibitors, trans-aconitate, oxaloacetate, arsenite and the uncoupler 2,4-dinitrophenol, inhibited corticosterone formation. On the other hand, cysteine sulfinate and pyruvate, which led to the removal of excess metabolic oxaloacetate formed from malate oxidation, increased rat adrenal mitochondrial O2 consumption as well as corticosterone production from 11-deoxycorticosterone. Pi and ATP also appeared to act in the same way in that these agents brought about a greater conversion rate of oxaloacetate into pyruvate. Pyruvate, resulting from the oxidation of malate, accumulated in the incubation system only when arsenite was added. Arsenite additions to malate and isocitrate inhibited the conversion of 11-deoxycorticosterone into corticosterone except when the 11β-hydroxylation of 11-deoxycorticosterone was supported with exogenous NADPH in Ca2+-swollen mitochondria. These results as well as the observations that NAD-linked malate dehydrogenase ( -malate: NAD+ oxidoreductase (decarboxylating), EC 1.1.1.39) is at least 10 times as active as the NADP-linked enzyme ( -malate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.39) in sonicated rat adrenal gland mitochondria, led to the conclusion that under our incubation conditions malate was mainly oxidized via the NAD-linked malate dehydrogenase. The fact that in malate incubations pyruvate did not accumulate because of its further metabolism in rat adrenal gland mitochondria, does not support the possibility that these mitochondria are the source of pyruvate for a “malate shuttle” originally thought to occur in rat adrenal gland7. This shuttle would have depended on the formation of pyruvate from malate in rat adrenal gland mitochondria followed by extrusion of the pyruvate formed intramitochondrially into the cytoplasm of the cell.  相似文献   

18.
Here, nodulated lupins (Lupinus angustifolius (cv Wonga)) were hydroponically grown at low phosphate (LP) or adequate phosphate (HP). Routes of pyruvate synthesis were assessed in phosphorus (P)-starved roots and nodules, because P-starvation can enhance metabolism of phosphoenolpyruvate (PEP) via the nonadenylate-requiring PEP carboxylase (PEPc) route. Since nodules and roots may not experience the same degree of P stress, it was postulated that decreases in metabolic inorganic phosphorus (Pi) of either organ, should favour more pyruvate being synthesized from PEPc-derived malate. Compared with HP roots, the LP roots had a 50% decline in Pi concentrations and 55% higher ADP : ATP ratios. However, LP nodules maintained constant Pi levels and unchanged ADP : ATP ratios, relative to HP nodules. The LP roots had greater PEP metabolism via PEPc and synthesized more pyruvate from PEPc-derived malate. In nodules, P supply did not influence PEPc activities or levels of malate-derived pyruvate. These results indicate that nodules were more efficient than roots in maintaining optimal metabolic Pi and adenylate levels during LP supply. This caused an increase in PEPc-derived pyruvate synthesis in LP roots, but not in LP nodules.  相似文献   

19.
Proteomic analysis of seed dormancy in Arabidopsis   总被引:3,自引:0,他引:3       下载免费PDF全文
The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [(35)S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium.  相似文献   

20.
Cell extracts of the fermentative Mollicutes Acholeplasma laidlawii B-PG9, Acholeplasma morum S2, Mycoplasma capricolum 14, Mycoplasma gallisepticum S6, Mycoplasma pneumoniae FH, Mycoplasma hyopneumoniae J and M. genitalium G-37, and the non-fermentative Mycoplasma hominis PG-21, Mycoplasma hominis 1620 and Mycoplasma bovigenitalium PG-11 were examined for 39 cytoplasmic enzyme activities associated with the tricarboxylic acid (TCA) cycle, transamination, anaplerotic reactions and other enzyme activities at the pyruvate locus. Malate dehydrogenase (EC 4.2.1.2) was the only TCA-cycle-associated enzyme activity detected and it was found only in the eight Mycoplasma species. Aspartate aminotransferase (EC 2.6.1.1) activity was detected in all Mollicutes tested except M. gallisepticum S6. Malate synthetase (EC 4.1.3.2) activity, in the direction of malate formation, was found in the eight Mycoplasma species, but not in any of the Acholeplasma species. Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) was detected in the direction of oxaloacetate (OAA) formation in both Acholeplasma species, but not in any of the Mycoplasma species. Pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), pyruvate dehydrogenase (EC 1.2.4.1) and lactate dehydrogenase (EC 1.1.1.27) activities were found in all ten Mollicutes tested. No activities were detected in any of the ten Mollicutes for aspartase (EC 4.3.1.1), malic enzyme (EC 1.1.1.40), PEP carboxytransphosphorylase (EC 4.1.1.38), PEP carboxykinase (EC 4.1.1.32) or pyruvate orthophosphate dikinase (EC 2.7.9.1). In these TCA-cycle-deficient Mollicutes the pyruvate-OAA locus may be a point of linkage for the carbons of glycolysis, lipid synthesis, nucleic acid synthesis and certain amino acids. CO2 fixation appears obligatory in the Acholeplasma species and either CO2 fixation or malate synthesis appears obligatory in the Mycoplasma species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号