首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Actin and myosin were localized in various salivary glands (parotid, submandibular, sublingual, lingual and Harderian gland) and the exocrine pancreas of rats by indirect immunofluorescence microscopy using specific rabbit antibodies against chicken gizzard myosin and actin. A bright immunofluorescent staining with both antibodies was observed at three main sites: (1) In myoepithelial cells of all salivary glands, (2) in secretory gland cells underneath the cell membrane bordering the acinar lumen (except Harderian and mucous lingual gland), and (3) in epithelial cells of the various secretory ducts (of all glands) in similar distribution as in acinar cells. The present immunohistochemical findings in acinar cells could lend further support to a concept suggesting that myosin and actin are involved in the process of transport and exocytosis of secretory granules.Supported by grants form Deutsche Forschungsgemeinschaft (Dr. 91/1, Ste. 105/19 and U. 34/4). We thank Mrs. Ursula König, Mrs. Christine Mahlmeister and Miss Renate Steffens for excellent technical assistance.  相似文献   

2.
We investigated the expression and distribution of osteopontin in mouse salivary glands. Western blot analysis showed intense positive bands at the predicted molecular mass (about 60 kDa) in mouse parotid and sublingual glands. However, a cross-reacted band around 30 kDa was strongly detected in submandibular glands. Indirect immunofluorescent analysis showed that osteopontin was localized at the luminal (apical) membranes of the acinar cells in parotid and sublingual glands. However, it was not detected in acinar cells of submandibular glands. No expression was found in ductal cells of any glands. We also examined the expression of matrix metalloproteinase (MMP)-3 and -7. In parotid gland, MMP-3 was observed at 57 kDa, indicating a latent form, but MMP-7 was not detected. In contrast, MMP-7 definitely was observed at 28 kDa area in submandibular gland, whereas MMP-3 was not detected. These results suggest that osteopontin localizes at luminal sites of acinar cells and may be associated with saliva secretion in mouse salivary gland. It is also suggested that osteopontin may be cleaved by MMP-7 in mouse submandibular gland.  相似文献   

3.
Sialomucin Complex (SMC; Muc4) is a heterodimeric glycoprotein consisting of two subunits, the mucin component ASGP-1 and the transmembrane subunit ASGP-2. Northern blot and immunoblot analyses demonstrated the presence of SMC/Muc4 in submaxillary, sublingual and parotid salivary glands of the rat. Immunocytochemical staining of SMC using monoclonal antisera raised against ASGP-2 and glycosylated ASGP-1 on paraffin-embedded sections of parotid, submaxillary and sublingual tissues was performed to examine the localization of the mucin in the major rat salivary glands. Histological and immunocytochemical staining of cell markers showed that the salivary glands consisted of varying numbers of serous and mucous acini which are drained by ducts. Parotid glands were composed almost entirely of serous acini, sublingual glands were mainly mucous in composition and a mixture of serous and mucous acini were present in submaxillary glands. Since immunoreactive (ir)-SMC was specifically localized to the serous cells, staining was most abundant in parotid glands, intermediate levels in submaxillary glands and least in sublingual glands. Ir-SMC in sublingual glands was localized to caps of cells around mucous acini, known as serous demilunes, which are also present in submaxillary glands. Immunocytochemical staining of SMC in human parotid glands was localized to epithelial cells of serous acini and ducts. However, the staining pattern of epithelial cells was heterogeneous, with ir-SMC present in some acinar and ductal epithelial cells but not in others. This report provides a map of normal ir-SMC/Muc4 distribution in parotid, submaxillary and sublingual glands which can be used for the study of SMC/Muc4 expression in salivary gland tumors.  相似文献   

4.
Aquaporin-5 (AQP5) is a water channel protein and is considered to play an important role in water movement across the plasma membrane. We raised anti-AQP5 antibody and examined the localization of AQP5 protein in rat salivary and lacrimal glands by immunofluorescence microscopy. AQP5 was found in secretory acinar cells of submandibular, parotid, and sublingual glands, where it was restricted to apical membranes including intercellular secretory canaliculi. In the submandibular gland, abundant AQP5 was also found additionally at the apical membrane of intercalated duct cells. Upon stimulation by isoproterenol, apical staining for AQP5 in parotid acinar cells tended to appear as clusters of dots. These results suggest that AQP5 is one of the candidate molecules responsible for the water movement in the salivary glands.  相似文献   

5.
Large volumes of saliva are generated by transepithelial Cl(-) movement during parasympathetic muscarinic receptor stimulation. To gain further insight into a major Cl(-) uptake mechanism involved in this process, we have characterized the anion exchanger (AE) activity in mouse serous parotid and mucous sublingual salivary gland acinar cells. The AE activity in acinar cells was Na(+) independent, electroneutral, and sensitive to the anion exchange inhibitor DIDS, properties consistent with the AE members of the SLC4A gene family. Localization studies using a specific antibody to the ubiquitously expressed AE2 isoform labeled acini in both parotid and sublingual glands. Western blot analysis detected an approximately 170-kDa protein that was more highly expressed in the plasma membranes of sublingual than in parotid glands. Correspondingly, the DIDS-sensitive Cl(-)/HCO(3)(-) exchanger activity was significantly greater in sublingual acinar cells. The carbonic anhydrase antagonist acetazolamide markedly inhibited, whereas muscarinic receptor stimulation enhanced, the Cl(-)/HCO(3)(-) exchanger activity in acinar cells from both glands. Intracellular Ca(2+) chelation prevented muscarinic receptor-induced upregulation of the AE, whereas raising the intracellular Ca(2+) concentration with the Ca(2+)-ATPase inhibitor thapsigargin mimicked the effects of muscarinic receptor stimulation. In summary, carbonic anhydrase activity was essential for regulating Cl(-)/HCO(3)(-) exchange in salivary gland acinar cells. Moreover, muscarinic receptor stimulation enhanced AE activity through a Ca(2+)-dependent mechanism. Such forms of regulation may play important roles in modulating fluid and electrolyte secretion by salivary gland acinar cells.  相似文献   

6.
In untreated, fasting animals the cells of the serous demilunes of the sublingual gland incorporate [3H]-leucine at a higher rate than any other of the 5 main cell types of the 3 major salivary glands. The acinar cells of the submandibular and the mucous cells of the sublingual gland show intermediate values, while the cells of the granular ducts of the submandibular and the acini of the parotid gland have a low rate of incorporation. In fasting animals extrusion of newly synthesized protein starts early in the cells of the serous demilunes. It starts between 4 and 7 hrs after [3H]-leucine injection in the acinar cells of the submandibular gland, while the other cell types did not lose substantial amounts of labelled (glyco)protein within 7 hrs. The secretion of protein is stimulated by the cholinergic drug pilocarpine in all but one of the 5 types of salivary gland cells studied. The acinar cells of the submandibular gland react strongly, the granular duct cells less strongly. Still less are the reactions of the acinar cells of the parotid and of the nucous cells of the sublingual gland. The cells of the serous demilunes of the latter appear to be insensible to pilocarpine. The effect of food uptake on secretion does not differ from pilocarpine stimulation, with one exception: the acinar cells of the parotid gland react more strongly on food uptake than on cholenergic stimulation.  相似文献   

7.
Salivary glands synthesize and secrete an unusual family of proline-rich proteins (PRPs) that can be broadly divided into acidic and basic PRPs. We studied the tissue-specific expression of these proteins in rabbits, using antibodies to rabbit acidic and basic PRPs as well as antibodies and cDNA probes to human PRPs. By immunoblotting, in vitro translation, and Northern blotting, basic PRPs could be readily detected in the parotid gland but were absent in other salivary glands. In contrast, synthesis in vitro of acidic PRPs was detected in parotid, sublingual, and submandibular glands. Ultrastructural localization with immunogold showed heavy labeling with antibodies to acidic PRPs of secretory granules of parotid acinar cells and sublingual serous demilune cells. Less intense labeling occurred in the seromucous acinar cells of the submandibular gland. With antibodies to basic PRPs, the labeling of the parotid gland was similar to that observed with antibodies to acidic PRPs, but there was only weak labeling of granules of a few sublingual demilune cells, and no labeling of the submandibular gland. These results demonstrate a variable pattern of distribution of acidic and basic PRPs in rabbit salivary glands. These animals are therefore well suited for study of differential tissue expression of PRPs.  相似文献   

8.
Antibodies against 21 and 27 kDa gap-junction proteins from rat liver were used to examine the identification and localization of gap-junction proteins in rat salivary glands. Acinar cells of the submandibular glands and parotid glands stained well for the 27 kDa gap junction protein and less intensely for the 21 kDa protein. Acinar cells of the sublingual glands were stained heavily for the 27 kDa gap junction protein and stained well for 21 kDa gap junction protein. No 27 kDa protein was observed in the ducts of the salivary glands. The 21 kDa gap-junction protein was distributed in some of the intercalated ducts in the parotid and submandibular glands. Immunoblotting of an extract of parotid glands with antibodies against 21 and 27 kDa gap-junction proteins revealed the presence of 21 and 27 kDa proteins in the parotid glands. It is concluded that the 27 kDa gap-junction protein in tistributed as a major component of the gap junctions in the acinar cells of all the salivary glands; the 21 kDa protein is localized as a minor component in the acinar cells and some portions of the intercalated ducts in the salivary glands. It is possible that these gap-junction proteins might contribute to the regulation of function of the salivary glands.  相似文献   

9.
Although feline salivary glands have been used in investigations on secretion and microlithiasis and both processes involve calcium, nothing is known about its distribution in these glands. Therefore we have demonstrated the presence of calcium by a histochemical technique using glyoxal bis(2-hydroxyanil) and a biochemical technique using dry ashing. The histochemical technique stained serous acinar cells weakly and rarely found mucous acinar cells strongly in the parotid gland, mucous acinar cells moderately to strongly and serous acinar cells weakly in the sublingual gland, and central and demilunar acinar cells moderately to strongly in the submandibular gland. The biochemical technique revealed less calcium in the parotid than in the submandibular and sublingual glands. Both techniques revealed a decrease of calcium in submandibular and sublingual glands following parasympathetic stimulation. The histochemical distribution of calcium, which corresponds to that of acinar secretory glycoprotein, and the loss of calcium following parasympathetic stimulation, which causes release of secretory granules, indicate the presence of calcium in secretory granules. The concentration of calcium in the different types of acinar cell corresponds to the acidity of the secretory glycoprotein and suggests that calcium is present as a cationic shield to allow the condensation of polyionic glycoprotein in secretory granules.  相似文献   

10.
Summary Antibodies against murine submandibular and sublingual mucins have been raised in rabbits. Both antisera appeared to be specific. Using these antibodies, the mucins were localized in the acinar cells of the submandibular and sublingual glands respectively.The dyed amylopectin method was used to estimate the activity of amylase in the salivary glands. The enzyme was localized either by a starch-substrate film method or with antibodies against purified parotid amylase. The activity of amylase in parotid homogenates is about 1000-fold higher than that in homogenates of either submandibular or sublingual glands, in which the activity was comparable. Amylase was localized in the acinar cells of the parotid gland with both localization techniques. In the sublingual gland, amylase was found predominantly in the stroma around the acini, and there was some evidence that amylase was present in the demilune cells as well. In the submandibular gland, contradictory results were obtained with both techniques. With the starch-substrate film method, amylase activity was found in the granular convoluted tubular cells, whereas immuno-reactive amylase could only be demonstrated in the acinar cells of this gland. It is concluded that in the submandibular gland amylase and mucin are present in the same cell type.  相似文献   

11.
The effect of cholinergic neural excitation by field stimulation on the acinar cell membrane potential was investigated in superfused segments of mouse pancreas and salivary glands (sublingual, submaxillary, and parotid glands).

Responses of acinar cells in both exocrine pancreas and salivary glands to the neural excitation obtained by field stimulation were similar to responses previously described in each gland to the externally applied acetylcholine.

In the pancreatic acinar cell, electrical field stimulation induced depolarization with a latency of 0.3 to 1.2 sec. This depolarization was accompanied by a marked decrease in membrane resistance. The equilibrium potential of the depolarization induced by stimulation was between -10 and -20 mV. In the sublingual gland, field stimulation induced depolarization of the acinar cell with a latency of 0.2 to 0.3 sec. The stimulus induced depolarization was blocked by the addition of atropine. In the submaxillary and parotid glands, field stimulation induced depolarization in some acinar cell and hyper-polarization in other cells.

The results support evidence previously presented by Petersen and his colleagues that acetylcholine acts to increase Na+ and K+ or Na+, K+, and Cl- permeabilities in the pancreatic acinar cell and to increase K+ and Na+ permeabilities in the salivary gland [11,24].  相似文献   

12.
Summary Electron microscopy of cat parotid glands revealed great heterogeneity in the secretory granules of normal unstimulated acinar cells. Electrical stimulation of the parasympathetic nerve to the gland evoked a copious flow of parotid saliva which was accompanied by an extensive depletion of the secretory granules from the acinar cells. Exocytosis was captured as it was occurring by means of perfusion-fixation, and showed that the events occur in a conventional manner. Stimulation of the sympathetic nerve caused only a very small flow of saliva, and no acinar degranulation was detected. It can be concluded that the parasympathetic secretomotor axons provide the main drive for parotid acinar degranulation in the cat. This contrasts with the rat in which sympathetic impulses provide the main stimulus for parotid acinar degranulation. These dissimilarities serve to emphasise how extensively species differences may influence autonomic responses in salivary glands.  相似文献   

13.
The research was planned to study the subcellular distribution of enzymatic secretory products within the secretory structures of the mouse major salivary glands at light and electron microscopy level by immunogold silver stain (IGSS) technique and double-sided post-embedding immunogold binding and silver amplification in order to speculate about their compartmentation. In particular, we experimented the above immunogold labeling approaches to localize the lysozyme and to verify its distribution patterns in relation to another secretion enzyme, alpha-amylase. Co-presence of lysozyme and alpha-amylase was observed in the convoluted granular tubule cells of the submandibular gland and in the demilunar cells of the sublingual gland as well as in the electron-dense regions of the mottled secretory granules in the parotid gland. Exclusive binding patterns of lysozyme were observed in the acinar cells of the submandibular and sublingual glands where alpha-amylase did not occur.  相似文献   

14.
Osteopontin is a multifunctional protein secreted by epithelial cells of various tissues. Its expression in the adult rat major salivary glands has not yet been studied. We examined osteopontin expression by immunohistochemistry using a well characterized monoclonal antibody. Submandibular glands of young adult male rats (70–100 days old) showed specific expression in secretion granules of granular duct cells but also in cells of the striated ducts and excretory duct. In the major sublingual as well as the parotid gland expression was found solely in the duct system. In addition, a few interstitial-like cells exhibiting very strong immunostaining for osteopontin could be found in either organ. Expression could neither be seen in acinar cells nor in cells of the intercalated ducts. Moreover, in submandibular glands of more aged rats (6- to 7-month old) which show well developed granular convoluted tubules, there was almost exclusive expression of osteopontin in granular duct cells as well as in some interstitial-like cells, but barely in the striated/excretory duct system. Western blot analysis of the submandibular gland showed a specific band migrating at approximately 74 kDa, detectable at both age stages. Osteopontin secreted fom granular duct cells may influence the compostion of the saliva, e.g. thereby modulating pathways affecting sialolithiasis. Its expression in striated duct cells may also hint to roles such as cell–cell attachment or cell differentiation. The cell-specific expression detected in the rat major salivary glands differs in part from that reported in mice, human and monkey.Nicholas Obermüller and Nikolaus Gassler contributed equally to this work.  相似文献   

15.
16.
Summary Light-microscopic autoradiography was used to localize the cellular sites for neutral amino acid uptake in submandibular and sublingual salivary gland epithelia. The vasculature of isolated glands was perfused for 3–5 min with either L-(3-3H)serine or L-(4-3H)phenylalanine and then fixed by perfusion with buffered glutaraldehyde. In the submandibular gland the small neutral amino acid L-serine and the aromatic amino acid L-phenylalanine were localized to central acinar cells, demilunar cells and ductal cells. In the sublingual gland silver grains associated with each of these tritiated amino acids were localized to central acinar and ductal cells. Perfusion of both submandibular and sublingual glands with unlabelled L-serine (25 mM) or L-phenylalanine (30 mM) resulted in a significant decrease in the silver grain density associated with each labelled amino acid. The absence of silver grains in the lumina of acinar and ductal cells and the presence of tight junctions near the apical surface of the epithelium strongly suggest that the initial uptake of these amino acids was mediated by basolateral plasma membrane carriers.  相似文献   

17.
Continuously feeding a liquid diet to growing rodents strongly inhibits parotid gland growth, due to suppressed growth of acinar cells. This study investigated whether a liquid diet had a similar effect on submandibular and sublingual glands of growing rats. Rats were weaned on day 21 after birth and then fed a pellet diet in the control group and a liquid diet in the experimental group for 0, 1, 2, 4, and 8 weeks. Their submandibular and sublingual glands were excised, weighed, and examined histologically, immunohistochemically (using antibodies to 5′-bromo-2-deoxyuridine and cleaved caspase 3), and ultrastructurally. The submandibular glands did not significantly differ between the control and experimental groups at all tested points. Only at Week 8, acinar cell area and 5′-bromo-2-deoxyuridine-labeling index of acinar cells in sublingual glands were significantly lower in the experimental group than in the control group. These results show that a liquid diet during rats’ growth period had no effect on acinar cells in their submandibular glands, and only a slight effect on acinar cells in their sublingual glands of growing rats, in contrast to the marked effect of a liquid diet on parotid glands.  相似文献   

18.
19.
In atrophic parotid glands induced by liquid diet, acinar cell apoptosis is increased while proliferative activity is reduced. This study aimed to clarify how liquid diet affects submandibular and sublingual glands, including acinar cell apoptosis and proliferation. Seven-week-old male Wistar rats were fed either a liquid (experimental group) or pellet diet (control group) from 3 to 21 days, respectively. Submandibular and sublingual glands were weighed and examined histologically, ultrastructurally, and immunohistochemically using antibodies to cleaved caspase-3 (Casp-3) and 5-bromo-2′-deoxyuridine (BrdU). Weights of submandibular and sublingual gland from the experimental group were not significantly different from controls at any time point. Histological and ultrastructural characteristics of experimental acinar cells in both glands were normal. Acinar cells in control and experimental submandibular glands were positively stained with periodic acid Schiff (PAS) and weakly stained by alcian blue (AB). In control and experimental sublingual glands, mucous acinar cells were PAS-positive and strongly AB-positive. Although Casp-3- and BrdU-positive acinar cells were identified in both glands in the experimental group, their labeling indices were not significantly different from controls. In conclusion, liquid diet in rats does not induce atrophic alterations to acinar cells, including apoptosis and proliferative activity in submandibular and sublingual glands.  相似文献   

20.
Summary An antibody to the 96 kD -subunit of the Na+, K+ -ATPase from Bufo marinus has been used in immunostaining rat kidney and salivary glands. Intense staining was observed on basolateral membranes of distal tubules of the kidney and striated ducts of the three major salivary glands. Less intense staining was seen on the basolateral membranes of parotid acinar cells, but no staining was seen on the acinar cells of submandibular or sublingual glands. These sites of staining have been shown, by other methods, to posses substantial Na+, K+ -ATPase, indicating that the antibody recognizes antigenic determinants of the sodium pump highly conserved in the course of evolution. In addition, staining with this antibody was observed at the apical region of cells of the proximal straight tubule and of the papillary collecting duct in the kidney. Absorption studies suggest that the apical antigenic determinants are the same or closely related to each other but are distinct from basolateral antigenic determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号