首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most known plant disease-resistance genes (R genes) include in their encoded products domains such as a nucleotide-binding site (NBS) or leucine-rich repeats (LRRs). Sequences with unknown function, but encoding these conserved domains, have been defined as resistance gene analogues (RGAs). The conserved motifs within plant NBS domains make it possible to use degenerate primers and PCR to isolate RGAs. We used degenerate primers deduced from conserved motifs in the NBS domain of NBS-LRR resistance proteins to amplify genomic sequences from Lens species. Fragments from approximately 500-850 bp were obtained. The nucleotide sequence analysis of these fragments revealed 32 different RGA sequences in Lens species with a high similarity (up to 91%) to RGAs from other plants. The predicted amino acid sequences showed that lentil sequences contain all the conserved motifs (P-loop, kinase-2, kinase-3a, GLPL, and MHD) present in the majority of other known plant NBS-LRR resistance genes. Phylogenetic analyses grouped the Lens NBS sequences with the Toll and interleukin-1 receptor (TIR) subclass of NBS-LRR genes, as well as with RGA sequences isolated from other legume species. Using inverse PCR on one putative RGA of lentil, we were able to amplify the flanking regions of this sequence, which contained features found in R proteins.  相似文献   

2.
Western white pine ( Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust ( Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.  相似文献   

3.
Recently, a number of disease-resistance genes related to a diverse range of pathogens were isolated from a wide variety of plant species. The majority of plant disease-resistance genes encoded a nucleotide-binding site (NBS) domain. According to the comparisons of the NBS domain of cloned R -genes, it has shown highly conserved amino acid motifs in this structure, which made it possible to isolate resistance gene analogs (RGAs) by PCR using degenerate primers. We have designed three pairs of degenerate primers based on two conserved motifs in the NBS domain of resistance proteins encoded by R -genes to amplify genomic sequences from ryegrass ( Lolium sp.). Sixteen NBS-like RGAs were isolated from turf and forage type grasses. The sequence analysis of these RGAs revealed that there existed a high similarity (up to 85%) between RGA sequences among ryegrass species and other plants. The alignment of the predicted amino acid sequences of RGAs showed that ryegrass RGAs contained four conserved motifs (P-Loop, kinase-2, kinase-3a, GLPL) present in other known plant NBS-leucine rich repeat resistance genes. These ryegrass RGAs all belonged to non-toll and interleukin-1 receptor subclass. Phylogenetic analysis of ryegrass RGAs and other cloned R -genes indicated that gene mutation was the predominant source of gene variations, and the sequence polymorphism was due to purifying selection rather than diversifying selection. We further analyzed the source of gene variation in other monocots, rice, barley, wheat, and maize based on the data published before. Our analysis indicated that the source of RGA diversity in these monocots was the same as in ryegrass. Thus, monocots were probably the same as dicots in the source of RGA diversity. Ryegrass RGAs in the present paper represented a large group of resistance gene homologs in monocots. We discussed the origin and the evolution of R -genes in grass species.  相似文献   

4.
NBS类植物抗病基因保守结构域的克隆为利用简并引物扩增抗病基因同源序列提供了可能.根据抗病基因Gro1-4、Gpa2、N等的P-loop和GLPL保守结构域设计简并引物,分离甘薯近缘野生种三浅裂野牵牛NBS类型抗病基因同源序列,共获得6条相关序列,核苷酸序列的相似性为48%~97%,推测氨基酸序列的相似性在25.2%~95.1%之间.系统进化分析表明,6条三浅裂野牵牛RGA序列可分为2个不同的类群:TIR-NBS和non-TIR-NBS.三浅裂野牵牛RGA序列与源自甘薯的RGA序列有很高的相似性,这在一定程度上反映了三浅裂野牵牛与甘薯之间的亲缘关系.分离的6条RGA序列分别命名为ItRGA1~ItRGA6,GenBank登录号分别为DQ849027~DQ849032.  相似文献   

5.
Western white pine (Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust (Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.Communicated by R. Hagemann  相似文献   

6.
Sequence analysis of plant disease resistance genes shows similarity among themselves, with the presence of conserved motifs common to the nucleotide‐binding site (NBS). Oligonucleotide degenerate primers designed from the conserved NBS motifs encoded by several plant disease resistance genes were used to amplify resistance gene analogues (RGAs) corresponding to the NBS sequences from the genomic DNA of various plant species. Using specific primers designed from the conserved NBS regions, 22 RGAs were cloned and sequenced from pearl millet (Pennisetum glaucum L. Br.). Phylogenetic analysis of the predicted amino acid sequences grouped the RGAs into nine distinct classes. GenBank database searches with the consensus protein sequences of each of the nine classes revealed their conserved NBS domains and similarity to other known R genes of various crop species. One RGA 213 was mapped onto LG1 and LG7 in the pearl millet linkage map. This is the first report of the isolation and characterization of RGAs from pearl millet, which will facilitate the improvement of marker‐assisted breeding strategies.  相似文献   

7.
Regions of amino acid conservation in the NBS domain of NBS-LRR resistance proteins facilitated the PCR isolation of eight resistance gene analog (RGA) sequences from genomic DNA of rice, barley, and Aegilops tauschii. These clones and other RGAs previously isolated from maize, rice, and wheat were assigned to 13 classes by DNA-sequence comparison and by their patterns of hybridisation to restricted barley DNA. Using a doubled-haploid mapping population, probes from 12 RGA classes were used to map 17 loci in the barley genome. Many of these probes have been used for mapping in wheat, and the collective data indicate that the positions of orthologous RGAs are conserved between barley and wheat. RGA loci were identified in the vicinity of barley leaf rust resistance loci Rph4, Rph7, and Rph10. Recombinants were identified between RGA loci and Rph7 and Rph10, while a cluster of RGA sequences detected by probe 5.2 cosegregated with Rph4 in 55 F2 lines.  相似文献   

8.
9.
10.
Chen G  Pan D  Zhou Y  Lin S  Ke X 《Journal of biosciences》2007,32(4):713-721
Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by degenerate primers. Degenerate primers based on the conserved motif (P-loop and GLPL) of the NBS domain from R -genes were used to isolate RGAs from the genomic DNA of sweet potato cultivar Qingnong no.2. Five distinct clusters of RGAs (22 sequences) with the characteristic NBS representing a highly diverse sample were identified in sweet potato genomic DNA. Sequence identity among the 22 RGA nucleotide sequences ranged from 41.2% to 99.4%, while the deduced amino acid sequence identity from the 22 RGAs ranged from 20.6%to 100%. The analysis of sweet potato RGA sequences suggested mutation as the primary source of diversity. The phylogenetic analyses for RGA nucleotide sequences and deduced amino acids showed that RGAs from sweet potato were classified into two distinct groups--toll and interleukin receptor-1 (TIR)-NBS-LRR and non-TIR-NBS-LRR. The high degree of similarity between sweet potato RGAs and NBS sequences derived from R-genes cloned from tomato, tobacco, flax and potato suggest an ancestral relationship. Further studies showed that the ratio of non-synonymous to synonymous substitution within families was low. These data obtained from sweet potato suggest that the evolution of NBS-encoding sequences in sweet potato occur by the gradual accumulation of mutations leading to purifying selection and slow rates of divergence within distinct R-gene families.  相似文献   

11.
甘薯NBS类抗病基因类似物的分离与序列分析   总被引:12,自引:0,他引:12  
利用已克隆植物抗病基因NBS(Nucleotide binding site)序列中的保守模体(motif)“P-loop”和“GLPL”合成简并引物,以甘薯(Ipomoea batatas)栽培品种青农2号基因组DNA为模板进行PCR扩增,通过T/A克隆、测序和序列分析,共得到15条具有连续ORF的抗病基因类似物(Resistance gene analogues,RGAs)序列,它们之间核苷酸序列间的相似性系数在41.2%-99.4%之间,而相应推测的氨基酸序列间的相似性系数在20.6%-100%之间,同时对分离的RGAs的核苷酸和氨基酸序列进行系统发育树分析,表明甘薯RGAs可分为TIR(Drosophila Toll or human interleukin receptor-like)和nonTIR两类.对甘薯RGAs和5个已克隆植物NBS的氨基酸序列进行结构分析表明,它们包括“P-loop”、“Kinase-2”、“Kinase-3a”、“GLPL”4个抗病基因所共有的保守模体.这些表明甘薯与其它物种的NBS类RGAs可能具有同样的起源和进化机制.  相似文献   

12.
Graham MA  Marek LF  Shoemaker RC 《Genetics》2002,162(4):1961-1977
PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar "Williams 82" [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca(2+)-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.  相似文献   

13.
Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.  相似文献   

14.
已克隆的植物抗病基因序列存在一些相对保守的结构区域.利用根据核苷酸结合位点(NBS)结构域扩增所获得的大豆抗病基因同源片段为混合探针,进行大豆cDNA文库筛选.通过筛库和5'RACE-PCR扩增后,获得一全长基因KR3.KR3的长度为2353 bp,编码636个氨基酸.KR3蛋白在结构上与烟草抗花叶病毒N基因蛋白有较高的同源性,具有Toll/白细胞介素-1受体(TIR)、NBS等抗病基因的分子特征.Southern杂交显示KR3在基因组中为低拷贝;RT-PCR分析表明,该基因的表达受外源水杨酸的诱导.  相似文献   

15.
大豆抗病基因同源序列的克隆与分析   总被引:1,自引:0,他引:1  
已克隆的植物抗病基因序列存在一些相对保守的结构区域。利用根据核苷酸结合位点(NBS)结构域扩增所获得的大豆抗病基因同源片段为混合探针,进行大豆cDNA文库筛选。通过筛库和5′RAcE-PcR扩增后,获得一全长基因KR3。KR3的长度为2353 bp,编码636个氨基酸。KR3蛋白在结构上与烟草抗花叶病毒N基因蛋白有较高的同源性,具有Toll/白细胞介素-1受体(TIR)、NBS等抗病基因的分了特征。Southern 杂交显KR3在基因组中为低拷贝:RT-PCR分析表明,该基因的表达受外源水杨酸的诱导。  相似文献   

16.
A large sugarcane EST (expressed sequence tag) project recently gave us access to 261,609 EST sequences from sugarcane, assembled into 81,223 clusters. Among these, we identified 88 resistance gene analogs (RGAs) based on their homology to typical pathogen resistance genes, using a stringent BLAST search with a threshold e-value of e(-50). They included representatives of the three major groups of resistance genes with NBS/LRR, LRR or S/T KINASE domains. Fifty RGAs showed a total of 148 single-dose polymorphic RFLP markers, which could be located on the sugarcane reference genetic map (constructed in cultivar R570, 2n=approximately 115). Fifty-five SSR loci corresponding to 134 markers in R570 were also mapped to enable the classification of the various haplotypes into homology groups. Several RGA clusters were found. One cluster of two LRR-like loci mapped close to the only disease resistance gene known so far in sugarcane, which confers resistance to common rust. Detailed sequence comparison between two NBS/LRR RGA clusters in relation to their orthologs in rice and maize suggests their polyphyletic origins, and indicates that the degree of divergence between paralogous RGAs in sugarcane can be larger than that from an ortholog in a distant species.  相似文献   

17.
Resistance gene analogues (RGAs) of Cicer were isolated by different PCR approaches and mapped in an inter-specific cross segregating for fusarium wilt by RFLP and CAPS analysis. Initially, two pairs of degenerate primers targeting sequences encoded at nucleotide-binding sites (NBS), which are conserved in plant disease resistance genes such as RPS2, L6 and N, were selected for amplification. Cloning and sequence analysis of amplified products from C. arietinum DNA revealed eight different RGAs. Additionally, five RGAs were identified after characterisation of the presumptive RGA alleles from C. reticulatum. Therefore, a total of 13 different RGAs were isolated from Cicer and classified through pair-wise comparison into nine distinct classes with sequence similarities below a 68% amino acid identity threshold. Sequence comparison of seven RGA alleles of C. arietinum and C. reticulatum revealed polymorphisms in four RGAs with identical numbers of synonymous and non-synonymous substitutions. An NlaIII site, unique in the RGA-A allele of C. arietinum, was exploited for CAPS analysis. Genomic organisation and map position of the NBS-LRR candidate resistance genes was probed by RFLP analysis. Both single-copy as well as multi-copy sequence families were present for the selected RGAs, which represented eight different classes. Five RGAs were mapped in an inter-specific population segregating for three race-specific Fusarium resistances. All RGAs mapped to four of the previously established eight linkage groups for chickpea. Two NBS-LRR clusters were identified that could not be resolved in our mapping population. One of these clusters, which is characterised by RFLP probe CaRGA-D, mapped to the linkage group harbouring two of three Fusarium resistance genes characterised in the inter-specific population. Our study provides a starting point for the characterisation and genetic mapping of candidate resistance genes in Cicer that is useful for marker-assisted selection and as a pool for resistance genes of Cicer.  相似文献   

18.
Primers based on the conserved motifs were used to isolate nucleotide-binding sites (NBS) type sequences in taro (Colocasia esculenta). Cloning and sequencing identified three taro NBS-type sequences called resistance gene analogues (RGAs) that depicted similarity to other cloned RGA sequences. The deduced amino acid sequences of the RGAs detected the presence of conserved domains, viz. P-loop, categorising them with the NBS–leucine-rich repeat class gene family. Phylogenetic characterisation of the taro RGAs along with RGAs of other plant species grouped them with the non-toll interleukin receptor subclasses of the NBS sequences. The isolation and characterisation of taro RGAs have been reported for the first time in this study. This will provide a starting point towards characterisation of candidate resistance genes in taro and can act as a reference guide for future studies.  相似文献   

19.
Most cloned plant disease resistance genes (R-genes) code for proteins belonging to the nucleotide binding site (NBS) leucine-rich repeat (LRR) superfamily. NBS-LRRs can be divided into two classes based on the presence of a TIR domain (Toll and interleukin receptor-like sequence) or a coiled coil motif (nonTIR) in their N-terminus. We used conserved motifs specific to nonTIR-NBS-LRR sequences in a targeted PCR approach to generate nearly 50 genomic soybean sequences with strong homology to known resistance gene analogs (RGAs) of the nonTIR class. Phylogenetic analysis classified these sequences into four main subclasses. A representative clone from each subclass was used for genetic mapping, bacterial artificial chromosome (BAC) library screening, and construction of RGA-containing BAC contigs. Of the 14 RGAs that could be mapped genetically, 12 localized to a 25-cM region of soybean linkage group F already known to contain several classical disease resistance loci. A majority of the genomic region encompassing the RGAs was physically isolated in eight BAC contigs, together spanning more than 1 Mb of genomic sequence with at least 12 RGA copies. Phylogenetic and sequence analysis, together with genetic and physical mapping, provided insights into the genome organization and evolution of this large cluster of soybean RGAs. Received: 8 May 2001 / Accepted: 30 June 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号