首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assimilation of tri- and tetrapeptides by human erythrocytes   总被引:1,自引:0,他引:1  
Evidence is presented that tripeptides enter human erythrocytes via saturable transport system(s) at rates similar to those previously described for dipeptides (King, G.F. and Kuchel, P.W. (1985) Biochem. J. 227, 833-842) but that the transmembrane flux rates for tetrapeptides are considerably less. 1H spin-echo NMR spectroscopy was used to monitor the coupled uptake and hydrolysis of peptides by red cells, since it enabled the simultaneous measurement of the levels of substrates and products of peptidase-catalysed reactions in suspensions with haematocrits similar to those found in vivo. Weighted non-linear least-squares regression of the integrated Michaelis-Menten equation onto progress curves obtained from the hydrolysis of Tyr-Gly-Gly and Gly-Gly-Gly in RBC lysates gave Km = 2.11 +/- 0.08 and 23.4 +/- 0.9 mmol/l and Vmax = 307 +/- 3 and 905 +/- 22 mmol/h per 1 packed cells, respectively. In whole cell suspensions, the rate of hydrolysis was considerably less and was dominated by the transmembrane flux of tripeptide. Progress curve analysis thus yielded the steady-state kinetic parameters for peptide transport; the values were Km = 11.6 +/- 1.1 and 56 +/- 18 mmol/l and Vmax = 12.9 +/- 3.0 and 36.4 +/- 3.2 mmol/h per 1 packed cells, respectively, for the previously mentioned peptides. The rate of transport of the tetrapeptide Gly-Gly-Gly-Gly was considerably less than either of the tripeptides. The above mentioned steady-state kinetic parameters were used in computer simulations of the coupled uptake and hydrolysis of tripeptides by human erythrocytes under physiological conditions; these simulations revealed certain similarities between the rates of peptide uptake by erythrocytes and the intestine in vivo.  相似文献   

2.
3.
Spin-echo NMR spectroscopy was shown to be a reliable technique for the monitoring of the in situ cleavage of gamma-Glu-Ala by gamma-glutamyl-amino acid cyclotransferase in whole erythrocytes and hemolysates. Of particular importance was the difference in chemical shifts between peptide resonances and those of the constituent amino acids. Using lysates of varying dilution, it was shown that the specific activity of the enzyme was not concentration-dependent, thus suggesting a lack of cytosolic low-molecular-weight-effectors or enzyme dissociation. Furthermore, the initial velocities of the reaction as a function of substrate concentration obeyed Michaelis-Menten kinetics with a Km = 2.0 +/- 0.3 mmol/l and Vmax = 137 +/- 7 mmol/h/l of cell water in 1H2O medium. Similar analysis in 2H2O medium revealed a solvent kinetic isotope effect of 1.9 +/- 0.4 at low substrate concentrations. The implications of this observation for the mechanism of the reaction are discussed. Cleavage of the peptide by a suspension of intact erythrocytes was at a rate 300 times less than the corresponding lysate flux, thus indicating the rate limitation by transport in the coupled system.  相似文献   

4.
3-O-Methyl-D-glucose transport across the plasma membrane of isolated rat hepatocytes was followed for net entry of the sugar into sugar-free cells (zero trans entry), net exit of sugar into sugar-free medium (zero trans exit) and for unidirectional entry and exit fluxes when cells had been equilibrated with sugar in the extracellular medium (equilibrium exchange entry and exit). These measurements were performed at 20 degrees C and pH 7.4 by the use of simple manual methods. Initial rates of transport showed a Michaelis--Menten dependency on the sugar concentration at the cis side of the membrane over the range of concentrations tested (100 microM to 100 mM). Transport was found to be symmetrical with no evidence of substrate stimulation of transport from the trans side of the membrane. Parameters (mean values +/- S.E.M.) of transport were estimated as Vmax. 86.2 +/- 9.7 mmol/litre of cell water per min and Km 18.1 +/- 5.9 mM for exchange entry, Vmax. 78.8 +/- 5.3 mmol/litre of cell water per min and Km 17.6 +/- 3.5 mM for exchange exit, Vmax. 84.1 +/- 8.4 mmol/litre of cell water per min and Km 16.8 +/- 4.6 mM for zero trans exit.  相似文献   

5.
The steady-state kinetics of enzymes in tissues, cells, and concentrated lysates can be characterized using high-resolution nuclear magnetic resonance spectroscopy; this is possible because almost invariably there are differences in the spectra of substrates and products of a reaction and these spectra are obtainable even from optically opaque samples. We used 1H spin-echo NMR spectroscopy to study the hydrolysis of alpha-L-glutamyl-L-alanine by cytosolic peptidases of lysed human erythrocytes. Nonlinear regression of the integrated Michaelis-Menten expression onto the progress-curve data yielded, directly, estimates of Vmax and Km for the hydrolase; a procedure for analyzing progress curves in this manner was adapted and compared with a commonly used procedure which employs the Newton-Raphson algorithm. We also performed a sensitivity analysis of the integrated Michaelis-Menten expression; this yielded equations that indicate under what conditions estimates of Km and Vmax are most sensitive to variations in experimental observables. Specifically, we showed that the most accurate estimates of the steady-state parameters from analysis of progress curves are obtained when the initial substrate concentration is much greater than Km. Furthermore, estimates of these parameters obtained by such an analysis are most sensitive to data obtained when the reaction is 60-80% complete, having started with the highest practicable initial substrate concentration.  相似文献   

6.
The hormone-stimulated 'dense-vesicle' cyclic AMP phosphodiesterase was solubilized as a proteolytically 'clipped' species, and purified to apparent homogeneity from rat liver with a 2000-3000-fold purification and a 13-18% yield. It appeared to be a dimer (Mr 112,000), of two Mr-57,000 subunits. Solubilization of either a liver or a hepatocyte membrane fraction, with sodium cholate in the presence of the protein inhibitor benzamidine, identified three protein bands which could be immunoprecipitated by a polyclonal antibody raised against the pure enzyme. The major band at Mr 62,000 is suggested to be the native 'dense-vesicle' enzyme, having a Mr-5000 extension which serves to anchor this enzyme to the membrane and which is cleaved off during proteolytic solubilization; the Mr-200,000 band is an aggregate of the Mr-62,000 species, and the Mr-63,000 species is possibly a precursor. The purified 'clipped' enzyme hydrolysed cyclic AMP with kinetics indicative of apparent negative co-operativity, with a Hill coefficient (h) of 0.43 and limiting kinetic constants of Km1 = 0.3 +/- 0.05 microM, Km2 = 29 +/- 6 microM, Vmax.1 = 0.114 +/- 0.015 unit/mg of protein and Vmax.2 = 0.633 +/- 0.054 unit/mg of protein. It hydrolysed cyclic GMP with Michaelis kinetics, Km = 10 +/- 1 microM and Vmax. = 4.1 +/- 0.2 units/mg of protein. Cyclic GMP was a potent inhibitor of cyclic AMP hydrolysis, with an IC50 (concn. giving 50% inhibition) of 0.20 +/- 0.01 microM-cyclic GMP when assayed at 0.1 microM-cyclic AMP. This enzyme was inhibited potently by several drugs known to exert positive inotropic effects on the heart, was extremely thermolabile, with a half-life of 4.5 +/- 0.5 min at 40 degrees C, and was shown to be distinct from the rat liver insulin-stimulated peripheral-plasma-membrane cyclic AMP phosphodiesterase [Marchmont, Ayad & Houslay (1981) Biochem. J. 195, 645-652].  相似文献   

7.
Acetyl phosphate produced an increase in the maximum velocity (Vmax. for the carboxylation of phosphoenolpyruvate catalysed by phosphoenolpyruvate carboxylase. The limiting Vmax. was 22.2 mumol X min-1 X mg-1 (185% of the value without acetyl phosphate). This compound also decreased the Km for phosphoenolpyruvate to 0.18 mM. The apparent activation constants for acetyl phosphate were 1.6 mM and 0.62 mM in the presence of 0.5 and 4 mM-phosphoenolpyruvate respectively. Carbamyl phosphate produced an increase in Vmax. and Km for phosphoenolpyruvate. The variation of Vmax./Km with carbamyl phosphate concentration could be described by a model in which this compound interacts with the carboxylase at two different types of sites: an allosteric activator site(s) and the substrate-binding site(s). Carbamyl phosphate was hydrolysed by the action of phosphoenolpyruvate carboxylase. The hydrolysis produced Pi and NH4+ in a 1:1 relationship. Values of Vmax. and Km were 0.11 +/- 0.01 mumol of Pi X min-1 X mg-1 and 1.4 +/- 0.1 mM, respectively, in the presence of 10 mM-NaHCO3. If HCO3- was not added, these values were 0.075 +/- 0.014 mumol of Pi X min-1 X mg-1 and 0.76 +/- 0.06 mM. Vmax./Km showed no variation between pH 6.5 and 8.5. The reaction required Mg2+; the activation constants were 0.77 and 0.31 mM at pH 6.5 and 8.5 respectively. Presumably, carbamyl phosphate is hydrolysed by phosphoenolpyruvate carboxylase by a reaction the mechanism of which is related to that of the carboxylation of phosphoenolpyruvate.  相似文献   

8.
Cysteine proteinases are relevant to several aspects of the parasite life cycle and of parasite-host relationships. Here, a quantitative investigation of the effect of temperature and pH on the total substrate inhibition of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi, is reported. Values of the apparent catalytic and inhibition parameters Km, Vmax, Vmax/Km, and K(i) for the cruzipain-catalysed hydrolysis of N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methylcoumarin) (Z-Phe-Arg-AMC) and azocasein were determined between 10.0 degrees C and 40.0 degrees C and between pH 4.5 and 8.5. Values of Km were independent of temperature and pH, whereas values of Vmax, Vmax/Km, and K(i) were temperature-dependent and pH-dependent. Over the whole pH range explored, values of logVmax, log(Vmax/Km), and logK(i) increased linearly with respect to T(-1). Values of Vmax and Vmax/Km were affected by the acid-base equilibrium of one temperature-independent ionizing group (i.e. pK(unl)' = pK(lig)' = 5.7 +/- 0.1, at 25.0 degrees C). Moreover, values of K(i) were affected by the alkaline pK shift of one ionizing group of active cruzipain (from pK(unl)" = 5.7 +/- 0.1 to pK(lig)" = 6.1 +/- 0.1, at 25.0 degrees C) upon Z-Phe-Arg-AMC binding. Values of logK(unl)', logK(lig)', and logK(lig)" were temperature-independent. Conversely, values of logK(unl)" were linearly dependent on T(-1). As a whole, total substrate inhibition of cruzipain decreased with increasing temperature and pH. These data suggest that both synthetic and protein substrates can bind to the unique active centre of cruzipain either productively or following a binding mode which results in enzyme inhibition. However, allosteric effect(s) cannot be excluded.  相似文献   

9.
10.
We determined if any naturally occurring peptides could act as substrates or inhibitors of the bifunctional, Zn2+ metalloenzyme LTA4 hydrolase/aminopeptidase (E.C.3.3.2.6). Several opioid peptides including met5-enkephalin, leu5-enkephalin, dynorphin1-6, dynorphin1-7, and dynorphin1-8 competitively inhibited the hydrolysis of L-proline-p-nitroanilide by leukotriene A4 hydrolase/aminopeptidase, consistent with an interaction at its active site. The enzyme catalyzed the N-terminal hydrolysis of tyrosine from met5-enkephalin with Km = 450 +/- 58 microM and Vmax = 4.9 +/- 0.6 nmol-hr-1-ug-1 and from leu5-enkephalin with Km = 387 +/- 90 microM and Vmax = 6.2 +/- 2.5 nmol-hr-1-ug-1. Bestatin, captopril and carnosine inhibited the hydrolysis of the enkephalins. It is noteworthy that the bifunctional catalytic traits of this enzyme include generation of an hyperalgesic substance, LTB4, and inactivation of analgesic opioid peptides.  相似文献   

11.
Characterization of three aminopeptidases purified from maternal serum   总被引:3,自引:0,他引:3  
The biochemical characteristics of aminopeptidase A (EC 3.4.11.7), oxytocinase (EC 3.4.11.3) and alanyl aminopeptidase (EC 3.4.11.2) purified from serum of pregnant women were compared. Aminopeptidase A hydrolysed only acidic amino acid derivatives, whereas oxytocinase and alanyl aminopeptidase had partially overlapping broad substrate specificities. Oxytocinase showed the highest Vmax value with LeuNA but the lowest Km value with ArgNA (Km 0.059 +/- 0.08 mmol/l). Alanyl aminopeptidase hydrolysed AlaNA most rapidly, but showed the highest affinity for LysNA (Km 0.054 +/- 0.006 mmol/l). The enzymes were sensitive to EDTA. Co2+, Ni2+ and Zn2+ were able to reactivate all suppressed enzymes, but Mn2+ reactivated only aminopeptidase A after EDTA inhibition. The alkaline earth metals were activators of aminopeptidase A, while Co2+ activated only alanyl aminopeptidase. This enzyme was the most sensitive to L-amino acids. Acidic amino acids inhibited aminopeptidase A but had no effect on the two other enzymes. Oxytocinase was most sensitive to thermal treatment. Amastatin did not inhibit oxytocinase, whereas aminopeptidase A was more resistant than alanyl aminopeptidase to this effector.  相似文献   

12.
A kinetic analysis of the tyrosine-specific protein kinase of pp60c-src from the C1300 mouse neuroblastoma cell line Neuro-2A and pp60c-src expressed in fibroblasts was carried out to determine the nature of the increased specific activity of the neuroblastoma enzyme. In immune-complex kinase assays with ATP-Mn2+ and the tyrosine-containing peptide angiotensin I as phosphoacceptor substrate, pp60c-src from the neuroblastoma cell line was characterized by a maximum velocity (Vmax.) that was 7-15-fold greater than the Vmax. of pp60c-src from fibroblasts. The neuroblastoma enzyme exhibited Km values for ATP (16 +/- 3 microM) and angiotensin I (6.8 +/- 2.6 mM) that were similar to Km values for ATP (25 +/- 3 microM) and angiotensin I (6.5 +/- 1.7 mM) of pp60c-src from fibroblasts. pp60v-src expressed in Rous-sarcoma-virus-transformed cells exhibited an ATP Km value (25 +/- 4 microM) and an angiotensin I Km value (6.6 +/- 0.5 mM) that approximated the values determined for pp60c-src in neuroblastoma cells and fibroblasts. These results indicate that the pp60c-src kinase from neuroblastoma cells has a higher turnover number than pp60c-src kinase from fibroblasts, and that the neural form of the enzyme would be expected to exhibit increased catalytic activity at the saturating concentrations of ATP that are found intracellularly.  相似文献   

13.
Na+-dependent uptake of 5-HT (5-hydroxytryptamine) into plasma membrane vesicles derived from bovine blood platelets and ATP-dependent 5-HT uptake into storage vesicles in platelet lysates were measured. Na+-dependent uptake was temperature-dependent, inhibited by imipramine and exhibited Michaelis-Menten kinetics (apparent Km, 0.12 +/- 0.02 microM; Vmax. 559 +/- 54 pmol/min per mg of protein. Halothane had no effect on Na+-dependent transport of 5-HT in plasma-membrane vesicles. ATP-dependent 5-HT transport into storage granules also exhibited Michaelis-Menten kinetics (apparent Km 0.34 +/- 0.03 microM; Vmax. 34.3 +/- 1.7 pmol/min per mg of protein) and was inhibited by noradrenaline (norepinephrine), but not by imipramine. Exposure of the granules to halothane resulted in a progressive decrease in Vmax. The results demonstrate a possible site for disruption of platelet function by anaesthetics.  相似文献   

14.
The rapid catabolism of glutamine by the cultured human lymphoblast line WI-L2 can be inhibited greater than 95% by incubation of cell suspensions with 6-diazo-5-oxo-L-norleucine (DON). The inhibition persists for at least four hours after removal of DON from the cell suspension. The exposure of cells to DON ihibits over 95% of the glutaminase activity measured in lysates in the presence of either phosphate or maleate. Similarly, gamma-glutamyl transpeptidase, assayed with gamma-glutamyl-p-nitroanilide as substrate and glycyglycine as acceptor, is inhibited over 90%. DON-treated and control cells accumulated radioactive material from suspensions containing [14C]-L-glutamine at similar initial rates; the radioactive material accumulated by the DON-treated cells is all recoverable as glutamine while the radioactive material accumulated by untreated cells is principally recovered as glutamate.  相似文献   

15.
1. Michaelis-Menten parameters for the hydrolysis of p-nitrophenyl alpha-L-arabinofuranoside were measured as a function of pL (pH or pD) in both 1H2O and 2H2O. 2. The variation of both Vmax. and Vmax./Km with pL is sigmoid, the pK governing Vmax. shifting from 6.34 +/- 0.05 in 1H2O to 6.84 +/- 0.07 in 2H2O, and that governing Vmax./Km from 5.89 +/- 0.03 in 1H2O to 6.38 +/- 0.05 in 2H2O. 3. In the plateau regions there is a small inverse solvent isotope effect on Vmax./Km (0.92), and one of 1.45 on Vmax. 4. The variation of Vmax. with isotopic composition is strictly linear, indicating that the isotope effect arises from the transfer of a single proton.  相似文献   

16.
The endogenous neuropeptide N-acetyl-L-aspartyl-L-glutamate (NAAG) fulfills several criteria required to be accepted as a neurotransmitter. NAAG inactivation may proceed through enzymatic hydrolysis into N-acetyl-L-aspartate and glutamate by an N-acetylated-alpha-linked acidic dipeptidase (NAALADase). Therefore, some properties of NAALADase activity were investigated using crude membranes from the rat forebrain. Kinetic parameters of the hydrolysis of [Glu-3H]NAAG were determined first (Km = 0.40 +/- 0.05 microM; Vmax = 155 +/- 20 pmol/min/mg of protein). The enzymatic activity, i.e., NAALADase, was inhibited noncompetitively by the glutamatergic agonist quisqualate (Ki = 1.9 +/- 0.3 microM), and competitively by N-acetyl-L-aspartyl-beta-linked L-glutamate (beta-NAAG; Ki = 0.70 +/- 0.05 microM). To determine whether glutamate-containing dipeptides, such as NAAG, beta-NAAG, N-acetyl-L-aspartyl-D-glutamate, L-aspartyl-L-glutamate, L-alanyl-L-glutamate, L-glutamyl-L-glutamate, and L-glutamyl-gamma-linked L-glutamate, were substrates of NAALADase, rat brain membranes were immobilized on a C-8 column. Thus, endogenous trapped glutamate was washed away and formation of unlabelled glutamate could be estimated using an o-phthaldialdehyde/reverse-phase HPLC detection procedure. beta-NAAG was shown to be a nonhydrolyzable competitive inhibitor of NAALADase. L-Aspartyl-L-glutamate was hydrolyzed faster than NAAG, suggesting that the acetylated moiety is not essential for NAALADase specificity. Rat brain membranes also contained nonspecific peptidase activities (insensitive to both quisqualate and beta-NAAG), which, in the case of L-alanyl-L-glutamate, for instance, accounted for all observed hydrolysis.  相似文献   

17.
Human paraoxonase (hPON3) is a high density lipoprotein-related glycoprotein with multi-enzymatic properties and antioxidant activity which is proposed to participate in the prevention of low density lipoprotein (LDL) oxidation. In this study, hPON3 gene was amplified from Human Fetal Liver Marathon-Ready cDNA and expressed in Escherichia coli. A majority of the expressed protein existed as inclusion bodies. The inclusion bodies were solubilized with Triton X-100 and refolded in vitro. The refolded rhPON3 was purified by DEAE-Sepharose Fast Flow and its purity was up to 90%. The Km and Vmax values of refolded rhPON3, in respect to phenylacetate hydrolysis were 7.47 +/- 2.14 mM and 66 +/- 17 U/min/mg (n = 3). The Km and Vmax values of refolded rhPON3, in respect to dihydrocoumarin hydrolysis were 0.83 +/- 0.21 mM and 621 +/- 66 U/min/mg (n = 3). The refolded rhPON3 exhibited similar antioxidant activity to that of rhPON3 purified from the soluble fraction of cell lysate and could effectively protect LDL from Cu2+ induced oxidation.  相似文献   

18.
Utilization of D-asparagine by Saccharomyces cerevisiae.   总被引:6,自引:6,他引:0       下载免费PDF全文
Yeast strains sigma1278b and Harden and Young, which synthesize only an internal constitutive form of L-asparaginase, do not grow on D-asparagine, as a sole source of nitrogen, and whole cell suspensions of these strains do not hydrolyze D-asparagine. Strains X2180-A2 and D273-10B, which possess an externally active form of asparaginase, are able to grow slowly on D-asparagine, and nitrogen-starved suspensions of these strains exhibit high activity toward the D-isomer. Nitrogen starvation of strain X218O-A2 results in coordinate increase of D- and L-asparaginase activity; the specific activity observed for the D-isomer is approximately 20% greater than that observed for the L-isomer. It was observed, in studies with cell extracts, that hydrolysis of D-asparagine occurred only with extracts from nitrogen-starved cells of strains that synthesize the external form of asparaginase. Furthermore, the activity of the extracts toward the D-isomer was always higher than that observed with the L-isomer. A 400-fold purified preparation of external asparaginase from Saccharomyces cerevisiae X218U-A2 hydrolyzed D-asparagine with an apparent Km of 0.23 mM and a Vmax of 38.7 mumol/min per mg of protein. D-Asparagine was a competitive inhibitor of L-asparagine hydrolysis and the Ki determined for this inhibition was approximately equal to its Km. These data suggest that D-asparagine is a good substrate for the external yeast asparaginase but is a poor substrate for the internal enzyme.  相似文献   

19.
D Khananshvili 《Biochemistry》1990,29(10):2437-2442
In order to distinguish between the Ping-Pong and sequential mechanisms of cation transport in the cardiac Na(+)-Ca2+ exchange system, the initial rates of the Nai-dependent 45Ca uptake (t = 1 s) were measured in reconstituted proteoliposomes, loaded with a Ca chelator. Under "zero-trans" conditions ([Na]o = [Ca]i = 0) at a fixed [Na]i = 10-160 mM with varying [45Ca]o = 2.5-122 microM for each [Na]i, the Km and Vmax values increased from 7.7 to 33.5 microM and from 2.3 to 9.0 nmol.mg-1.s-1, respectively. The Vmax/Km values show a +/- 2-10% deviation from the average value of 0.274 nmol.mg-1.s-1.microM-1 over the whole range of [Na]i. These deviations are within the standard error of Vmax (+/- 3-7%), Km (+/- 11-17%), and Vmax/Km (+/- 11-19%). This suggests that, under conditions in which Vmax and Km are [Na]i dependent and vary 4-5-fold, the Vmax/Km values are constant within the experimental error. In the presence of K(+)-valinomycin the Vmax/Km values are 0.85 +/- 0.17 and 1.08 +/- 0.18 nmol.mg-1.s-1.microM-1 at [Na]i = 20 and 160 mM, respectively, suggesting that under conditions of "short circuit" of the membrane potential the Vmax/Km values still exhibit the [Na]i independence. At a very low fixed [45Ca]o = 1.1 microM with varying [Na]i = 10-160 mM, the initial rates were found to be [Na]i independent. At a high fixed [45Ca]o = 92 microM the initial rates show a sigmoidal dependence on the [Na]i with Vmax = 13.8 nmol.mg-1.s-1, KmNa = 21 mM, and Hill coefficient nH = 1.5. The presented data support a Ping-Pong (consecutive) mechanism of cation transport in the Na(+)-Ca2+ exchanger.  相似文献   

20.
1. The apparent Michaelis constants of the glutamate dehydrogenase (EC 1.4.1.3), the glutamate-oxaloacetate transaminase (EC 2.6.1.1) and the glutaminase (EC 3.5.1.2) of rat brain mitochondria derived from non-synaptic (M) and synaptic (SM2) sources were studied. 2. The kinetics of oxygen uptake of both populations of mitochondria in the presence of a fixed concentration of malate and various concentrations of glutamate or glutamine were investigated. 3. In both mitochondrial populations, glutamate-supported respiration in the presence of 2.5 mM-malate appears to be biphasic, one system (B) having an apparent Km for glutamate of 0.25 +/- 0.04 mM (n=7) and the other (A) of 1.64 +/- 0.5 mM (n=7) [when corrected for low-Km process, Km=2.4 +/- 0.75 mM (n=7)]. Aspartate production in these experiments followed kinetics of a single process with an apparent Km for glutamate of 1.8-2 mM, approximating to the high-Km process. 4. Oxygen-uptake measurement with both mitochondrial populations in the presence of malate and various glutamate concentrations in which amino-oxyacetate was present showed kinetics approximating only to the low-Km process (apparent Km for glutamate approximately 0.2 mM). Similar experiments in the presence of glutamate alone showed kinetics approximating only to the high-Km process (apparent Km for glutamate approximately 1-1.3 mM). 5. Oxygen uptake supported by glutamine (0-3 mM) and malate (2.5 mM) by the free (M) mitochondrial population, however, showed single-phase kinetics with an apparent Km for glutamine of 0.28 mM. 6. Aspartate and 2-oxoglutarate accumulation was measured in 'free' nonsynaptic (M) brain mitochondria oxidizing various concentrations of glutamate at a fixed malate concentration. Over a 30-fold increase in glutamate concentration, the flux through the glutamate-oxaloacetate transaminase increased 7--8-fold, whereas the flux through 2-oxoglutarate dehydrogenase increased about 2.5-fold. 7. The biphasic kinetics of glutamate-supported respiration by brain mitochondria in the presence of malate are interpreted as reflecting this change in the relative fluxes through transamination and 2-oxoglutarate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号