首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
脂筏在人类疱疹病毒6型装配中的作用   总被引:1,自引:0,他引:1  
黄红兰  李凡 《病毒学报》2008,24(4):295-299
为了探讨脂筏在人类疱疹病毒6型(HHV-6)装配中的作用,用HHV-6 GS株感染HSB2细胞,用非离子去污剂Triton X-100提取脂筏成分,利用Western blot分析HHV-6包膜糖蛋白与脂筏的相关性.并用免疫荧光双标记的方法,从分子共定位的角度研究HHV-6糖蛋白B(gB)与GPI(glycosyl-phosphatidyl inosital)锚固蛋白CD59分子以及神经节苷脂GMI(monosialotetrahexosyl ganglioside)分子之间的表达与分布关系.结果发现HHV-6包膜糖蛋白B、H、L、Q1和Q2(gB、gH、gL、gQ1和gQ2)分布在脂筏部位.激光共聚焦显微镜可观察到CD59分子及GM1均与HHV-6包膜糖蛋白B有着相同的分布,即脂筏提供HHV-6装配的平台.关于脂筏在人类疱疹病毒6型装配中的作用,这是第一次报道.  相似文献   

2.
Viruses are pathogenic agents that can infect all varieties of organisms, including plants, animals, and humans. These microscopic particles are genetically simple as they encode a limited number of proteins that undertake a wide range of functions. While structurally distinct, viruses often share common characteristics that have evolved to aid in their infectious life cycles. A commonly underappreciated characteristic of many deadly viruses is a lipid envelope that surrounds their protein and genetic contents. Notably, the lipid envelope is formed from the host cell the virus infects. Lipid-enveloped viruses comprise a diverse range of pathogenic viruses, which often lead to high fatality rates and many lack effective therapeutics and/or vaccines. This perspective primarily focuses on the negative-sense RNA viruses from the order Mononegavirales, which obtain their lipid envelope from the host plasma membrane. Specifically, the perspective highlights the common themes of host cell lipid and membrane biology necessary for virus replication, assembly, and budding.  相似文献   

3.
Broad host range insect pathogenic fungi penetrate through the host cuticle, necessitating an ability to confront and overcome surface lipids and other molecules that often include antimicrobial compounds. In this context, induction of lipid assimilatory pathways by exogenous substrates is crucial for successful infection to occur, and lipid growth substrates can have significant effects on the virulence of fungal infectious propagules, e.g. conidia. The production of lipases is a critical part of the cuticle-degrading repertoire and pathways involved in triglyceride metabolism and phospholipid homeostasis have been shown to contribute to host invasion. Mobilization of endogenous lipid stores via the activities of the caleosin and perilipin lipid storage-turnover proteins, have been linked to diverse processes including formation of penetration structures, e.g. germ tubes and appressoria, spore properties and dispersal, and the ability to respond to lipid growth substrates and virulence. Here, we summarize recent advances in our understanding of lipid assimilation and mobilization pathways in the ability of entomogenous fungi to infect and use host substrates. Host surface and internal lipids can alternatively act as antifungal barriers, inducers of pathogenesis-related pathways, and/or as fungal growth substrates. Lipids and lipid assimilation can be considered as forming a co-evolutionary web between the insect host and entomogenous fungi.  相似文献   

4.
Yersinia pestis is an important human pathogen that is maintained in flea-rodent enzootic cycles in many parts of the world. During its life cycle, Y. pestis senses host-specific environmental cues such as temperature and regulates gene expression appropriately to adapt to the insect or mammalian host. For example, Y. pestis synthesizes different forms of lipid A when grown at temperatures corresponding to the in vivo environments of the mammalian host and the flea vector. At 37 degrees C, tetra-acylated lipid A is the major form; but at 26 degrees C or below, hexa-acylated lipid A predominates. In this study, we show that the Y. pestis msbB (lpxM) and lpxP homologs encode the acyltransferases that add C12 and C(16:1) groups, respectively, to lipid IV(A) to generate the hexa-acylated form, and that their expression is upregulated at 21 degrees C in vitro and in the flea midgut. A Y. pestis deltamsbB deltalpxP double mutant that did not produce hexa-acylated lipid A was more sensitive to cecropin A, but not to polymyxin B. This mutant was able to infect and block fleas as well as the parental wild-type strain, indicating that the low-temperature-dependent change to hexa-acylated lipid A synthesis is not required for survival in the flea gut.  相似文献   

5.
A quantitative histochemical technique based on scanning microdensitometry has been used to investigate neutral lipid utilisation by hatched and dormant juveniles of Globodera rostochiensis and Globodera pallida. During storage in water at 20°C, hatched juveniles of the two species showed no statistical difference in their rate of lipid utilisation. A semi-logarithmic curve fitted to the pooled data suggests that 50% relative utilisation occurred after 36 ± 4 days of storage. Measurement of the neutral lipid reserves for unhatched juveniles of G. pallida dormant in field soils in Northern England for a maximum of 14 yr showed a reduced rate of metabolism with a 50% loss of neutral lipid reserves after 7·5 ± 1·1 yr. The use of neutral lipid reserves by the hatched, starved juveniles was correlated with their survival and with a loss of both locomotor activity and an ability to infect tomato seedlings. Furthermore, results suggest that a loss of mobility by juveniles from field populations of G. pallida immediately after hatching was more closely related to their neutral lipid reserves than the duration of their dormancy. Infection of plants was also reduced for one population. This suggests that measurement of the neutral lipid reserves of a population may be of value for modifying the economic threshold to take account of changes in infectivity during prolonged rotations.  相似文献   

6.
Bacteriophage PM2 presently is the only member of the Corticoviridae family. The virion consists of a protein-rich lipid vesicle, which is surrounded by an icosahedral protein capsid. The lipid vesicle encloses a supercoiled circular double-stranded DNA genome of 10,079 bp. PM2 belongs to the marine phage community and is known to infect two gram-negative Pseudoalteromonas species. In this study, we present a characterization of the PM2 genome made using the in vitro transposon insertion mutagenesis approach. Analysis of 101 insertion mutants yielded information on the essential and dispensable regions of the PM2 genome and led to the identification of several new genes. A number of lysis-deficient mutants as well as mutants displaying delayed- and/or incomplete-lysis phenotypes were identified. This enabled us to identify novel lysis-associated genes with no resemblance to those previously described from other bacteriophage systems. Nonessential genome regions are discussed in the context of PM2 genome evolution.  相似文献   

7.
为研究溶酶体组织蛋白酶B(cathepsin B,CTSB)对脂肪细胞分化的影响,本实验构建了Ctsb重组腺病毒超表达载体,包装并侵染体外培养的猪前体脂肪细胞,采用油红O染色,油红O提取比色法检测猪前体脂肪细胞分化的情况,并通过real-time PCR法检测成脂关键基因mRNA水平的变化.结果显示,重组腺病毒Ctsb载体构建成功,转染猪前体脂肪细胞后,使Ctsb的mRNA和蛋白质表达量分别提高了约16倍和12倍. CTSB超表达能促进脂肪细胞的分化和脂质积累,成脂关键基因过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma, PPARγ)、脂肪酸结合蛋白2(adipocyte protein 2, aP2)的表达量均有显著升高. 研究表明,提高Ctsb的表达能促进猪前体脂肪细胞分化,揭示了Ctsb在猪前体脂肪细胞分化过程中可能发挥关键作用. 研究结果为进一步研究其作用机制奠定了基础.  相似文献   

8.
Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped viruses that infect their host cells by receptor-mediated endocytosis and subsequent fusion from within acidic endosomes. Fusion of the viral envelope requires the presence of both cholesterol and sphingolipids in the target membrane. This is suggestive of a possible involvement of sphingolipid-cholesterol microdomains, or "lipid rafts," in the membrane fusion and cell entry process of the virus. In this study, large unilamellar vesicles (LUVs) were prepared from synthetic sphingolipids and sterols that vary with respect to their capacity to promote microdomain formation, as assessed by gradient flotation analysis in the presence of Triton X-100. SFV and SIN fused with LUVs irrespective of the presence or absence of Triton X-100-insoluble microdomains. These results suggest that SFV and SIN do not require the presence of lipid rafts for fusion with target membranes. Furthermore, it is not necessary for sphingolipids to reside in a detergent-insoluble complex with cholesterol to promote SFV or SIN fusion.  相似文献   

9.
Pathogenic bacteria secrete various virulence factors, including toxins, lipases and proteases that allow them to infect, breakdown and colonize host tissue. Among various modes of action that the pathogenic bacteria use to damage the host, pore formation (by pore forming toxins (PFTs)) and lipid hydrolysis (by phospholipases) modes are common in damaging the eukaryotic cell membrane. PFTs in their monomeric form are extracellular diffusible and able to form hydrophilic pores in cell membrane while phospholipases cleaves and hydrolyzes the ester bonds of most phospholipids in cell membrane. Both modes of action cause uncontrolled permeation of ions and molecules across cell membrane, leading to cell death by apoptosis or necrosis. In this work, the toxins secreted by two clinically important human pathogens, methicillin susceptible Staphylococcus aureus (MSSA476) and Pseudomonas aeruginosa (PAO1) were studied via their interaction with a planar tethered bilayer lipid membrane (pTBLM) using surface plasmon resonance spectroscopy (SPR) and electrochemical impedance spectroscopy (EIS). Detection and discrimination is based on lipid-loss (lipid hydrolysis by phospholipases) or non lipid-loss (pore formation by PFTs) from pTBLM upon interaction with supernatant of pathogenic bacteria. Using EIS and SPR, it is demonstrated that major toxins of S. auerus are PFTs while most of toxin associated with P. aeruginosa are more lipid damaging lipolytic enzymes. Such a format might have future utility as a simple assay for measuring the presence membrane lytic virulence factors in clinical samples.  相似文献   

10.
Emerging lipidomic technologies have enabled researchers to dissect the complex roles of phospholipases in lipid metabolism, cellular signaling and immune regulation. Host phospholipase products are involved in stimulating and resolving the inflammatory response to pathogens. While many pathogen‐derived phospholipases also manipulate the immune response, they have recently been shown to be involved in lipid remodeling and scavenging during replication. Animal and plant hosts as well as many pathogens contain a family of patatin‐like phospholipases, which have been shown to have phospholipase A2 activity. Proteins containing patatin‐like phospholipase domains have been identified in protozoan parasites within the Apicomplexa phylum. These parasites are the causative agents of some of the most widespread human diseases. Malaria, caused by Plasmodium spp., kills nearly half a million people worldwide each year. Toxoplasma and Cryptosporidium infect millions of people each year with lethal consequences in immunocompromised populations. Parasite‐derived patatin‐like phospholipases are likely effective drug targets and progress in the tools available to the Apicomplexan field will allow for a closer look at the interplay of lipid metabolism and immune regulation during host infection.  相似文献   

11.
Poxviruses, including vaccinia virus (VV) and canarypox virus (ALVAC), do not indiscriminately infect all cell types of the primary human leukocytes (PHLs) that they encounter but instead demonstrate an extremely strong bias toward infection of monocytes and monocyte lineage cells. We studied the specific molecular events that determine the VV tropism for major PHL subsets including monocytes, B cells, neutrophils, NK cells, and T cells. We found that VV exhibited an extremely strong bias of cell surface protein-dependent binding to monocytes, B cells, and activated T cells to a similar degree and to neutrophils to a much lesser extent. Resting T cells and resting NK cells exhibited only trace amounts of VV binding. Activated T cells, however, became permissive to VV binding, infection, and replication, while activated NK cells still resisted VV binding. VV binding strongly colocalized with lipid rafts on the surfaces of all VV binding-susceptible PHL subsets, even when lipid rafts were relocated to cell uropods upon cell polarization. Immunosera raised against detergent-resistant membranes (DRMs) from monocytes or activated T cells, but not resting T cells, effectively cross-blocked VV binding to and infection of PHL subsets. CD29 and CD98, two lipid raft-associated membrane proteins that had been found to be important for VV entry into HeLa cells, had no effect on VV binding to and infection of primary activated T cells. Our data indicate that PHL subsets express VV protein receptors enriched in lipid rafts and that receptors are cross-presented on all susceptible PHLs.  相似文献   

12.
Protein geranylgeranyltransferase-I (GGTase-I) catalyzes the transfer of a 20-carbon isoprenoid lipid to the sulfur of a cysteine residue located near the C terminus of numerous cellular proteins, including members of the Rho superfamily of small GTPases and other essential signal transduction proteins. In humans, GGTase-I and the homologous protein farnesyltransferase (FTase) are targets of anticancer therapeutics because of the role small GTPases play in oncogenesis. Protein prenyltransferases are also essential for many fungal and protozoan pathogens that infect humans, and have therefore become important targets for treating infectious diseases. Candida albicans, a causative agent of systemic fungal infections in immunocompromised individuals, is one pathogen for which protein prenylation is essential for survival. Here we present the crystal structure of GGTase-I from C. albicans (CaGGTase-I) in complex with its cognate lipid substrate, geranylgeranylpyrophosphate. This structure provides a high-resolution picture of a non-mammalian protein prenyltransferase. There are significant variations between species in critical areas of the active site, including the isoprenoid-binding pocket, as well as the putative product exit groove. These differences indicate the regions where specific protein prenyltransferase inhibitors with antifungal activity can be designed.  相似文献   

13.
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.  相似文献   

14.
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.  相似文献   

15.
Herpesviruses are double-stranded DNA, enveloped viruses that infect host cells through fusion with either the host cell plasma membrane or endocytic vesicle membranes. Efficient infection of host cells by herpesviruses is remarkably more complex than infection by other viruses, as it requires the concerted effort of multiple glycoproteins and involves multiple host receptors. The structures of the major viral glycoproteins and a number of host receptors involved in the entry of the prototypical herpesviruses, the herpes simplex viruses (HSVs) and Epstein-Barr virus (EBV), are now known. These structural studies have accelerated our understanding of HSV and EBV binding and fusion by revealing the conformational changes that occur on virus-receptor binding, depicting potential sites of functional protein and lipid interactions, and identifying the probable viral fusogen.  相似文献   

16.
Extremophiles are found in all three domains of cellular life. However, hyperthermic and hypersaline environments are typically dominated by archaeal cells which also hold the records for the highest growth temperature and are able to grow even at saturated salinity. Hypersaline environments are rich of virus‐like particles, and spindle‐shaped virions resembling lemons are one of the most abundant virus morphotypes. Spindle‐shaped viruses are archaea‐specific as all the about 15 such virus isolates infect either hyperthermophilic or halophilic archaea. In the present work, we studied spindle‐shaped virus His1 infecting an extremely halophilic euryarchaeon, Haloarcula hispanica. We demonstrate that His1 tolerates a variety of salinities, even lower than that of seawater. The detailed analysis of the structural constituents showed that the His1 virion is composed of only one major and a few minor structural proteins. There is no lipid bilayer in the His1 virion but the major structural protein VP21 is most likely lipid modified. VP21 forms the virion capsid, and the lipid modification probably enables hydrophobic interactions leading to the flexible nature of the virion. Furthermore, we propose that euryarchaeal virus His1 may be related to crenarchaeal fuselloviruses, and that the short‐tailed spindle‐shaped viruses could form a structure‐based viral lineage.  相似文献   

17.
Yersinia pestis spread throughout the Americas in the early 20th century, and it occurs predominantly as a single clone within this part of the world. However, within Eurasia and parts of Africa there is significant diversity among Y. pestis strains, which can be classified into different biovars (bv.) and/or subspecies (ssp.), with bv. orientalis/ssp. pestis most closely related to the American clone. To determine one aspect of the relatedness of these different Y. pestis isolates, the structure of the lipopolysaccharide (LPS) of four wild-type and one LPS-mutant Eurasian/African strains of Y. pestis was determined, evaluating effects of growth at mammalian (37 degrees C) or flea (25 degrees C) temperatures on the structure and composition of the core oligosaccharide and lipid A. In the wild-type clones of ssp. pestis, a single major core glycoform was synthesized at 37 degrees C whereas multiple core oligosaccharide glycoforms were produced at 25 degrees C. Structural differences occurred primarily in the terminal monosaccharides. Only tetraacyl lipid A was made at 37 degrees C, whereas at 25 degrees C additional pentaacyl and hexaacyl lipid A structures were produced. 4-Amino-4-deoxyarabinose levels in lipid A increased with lower growth temperatures or when bacteria were cultured in the presence of polymyxin B. In Y. pestis ssp. caucasica, the LPS core lacked D-glycero-D-manno-heptose and the content of 4-amino-4-deoxyarabinose showed no dependence on growth temperature, whereas the degree of acylation of the lipid A and the structure of the oligosaccharide core were temperature dependent. A spontaneous deep-rough LPS mutant strain possessed only a disaccharide core and a slightly variant lipid A. The diversity and differences in the structure of the Y. pestis LPS suggest important contributions of these variations to the pathogenesis of this organism, potentially related to innate and acquired immune recognition of Y. pestis and epidemiologic means to detect, classify, control and respond to Y. pestis infections.  相似文献   

18.
Several distinctive properties of PRD1, an icosahedral plasmid-dependent phage, are described. The drug-resistance plasmid-dependent host range of PRD1 extends beyond the P incompatibility group and includes gram-negative bacteria containing plasmids of incompatibility groups N and W. PRD1 phage will infect pseudomonads and Enterobacteriaceae containing either a P or W incompatibility group plasmid. PRD1 adsorbs to the cell wall of R(+) bacteria and thus its infectivity indicates cell wall alterations by these drug-resistance plasmid groups. PRD1 nucleic acid is duplex DNA with an estimated molecular weight of 24 x 10(6). The appearance of PRD1 in electron micrographs is suggestive of lipid content in addition to its buoyant density of 1.348 in CsCl and its sensitivity to chloroform. The latent period of PRD1 varies with the R(+) host bacterial strain used for growth of the phage.  相似文献   

19.
Liu XH  Lu JP  Zhang L  Dong B  Min H  Lin FC 《Eukaryotic cell》2007,6(6):997-1005
We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the DeltaMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the DeltaMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea.  相似文献   

20.
Recent, primarily structural observations indicate that related viruses, harboring no sequence similarity, infect hosts of different domains of life. One such clade of viruses, defined by common capsid architecture and coat protein fold, is the so-called PRD1-adenovirus lineage. Here we report the structure of the marine lipid-containing bacteriophage PM2 determined by crystallographic analyses of the entire approximately 45 MDa virion and of the outer coat proteins P1 and P2, revealing PM2 to be a primeval member of the PRD1-adenovirus lineage with an icosahedral shell and canonical double beta barrel major coat protein. The view of the lipid bilayer, richly decorated with membrane proteins, constitutes a rare visualization of an in vivo membrane. The viral membrane proteins P3 and P6 are organized into a lattice, suggesting a possible assembly pathway to produce the mature virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号