首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.  相似文献   

2.
The conservation of expression of appendage patterning genes, particularly Distal-less, has been shown in a wide taxonomic sampling of animals. However, the functional significance of this expression has been tested in only a few organisms. Here we report functional analyses of orthologues of the genes Distal-less, dachshund, and homothorax in the appendages of the milkweed bug Oncopeltus fasciatus (Hemiptera). This hemimetabolous insect has typical legs but highly derived mouthparts. Distal-less, dachshund, and homothorax are conserved in their individual expression patterns and functions in the legs of Oncopeltus, but their functions in other appendages are in some cases divergent. We find that specification of antennal identity does not require wild-type Distal-less activity in Oncopeltus as it does in Drosophila. Additionally, the mouthparts of Oncopeltus show novel patterns of gene expression and function, relative to other insects. Expression of Distal-less in the maxillary stylets of Oncopeltus does not seem necessary for proper development of this appendage, while dachshund and homothorax are crucial for formation of the mandibular and maxillary stylets. These data are used to evaluate hypotheses for the evolution of hemipteran mouthparts and the evolution of developmental mechanisms in insect appendages in general.  相似文献   

3.
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.  相似文献   

4.
BACKGROUND: The Drosophila genes wingless (wg) and decapentaplegic (dpp) comprise the top level of a hierarchical gene cascade involved in proximal-distal (PD) patterning of the legs. It remains unclear, whether this cascade is common to the appendages of all arthropods. Here, wg and dpp are studied in the millipede Glomeris marginata, a representative of the Myriapoda. RESULTS: Glomeris wg (Gm-wg) is expressed along the ventral side of the appendages compatible with functioning during the patterning of both the PD and dorsal-ventral (DV) axes. Gm-wg may also be involved in sensory organ formation in the gnathal appendages by inducing the expression of Distal-less (Dll) and H15 in the organ primordia. Expression of Glomeris dpp (Gm-dpp) is found at the tip of the trunk legs as well as weakly along the dorsal side of the legs in early stages. Taking data from other arthropods into account, these results may be interpreted in favor of a conserved mode of WG/DPP signaling. Apart from the main PD axis, many arthropod appendages have additional branches (e.g. endites). It is debated whether these extra branches develop their PD axis via the same mechanism as the main PD axis, or whether branch-specific mechanisms exist. Gene expression in possible endite homologs in Glomeris argues for the latter alternative. CONCLUSION: All available data argue in favor of a conserved role of WG/DPP morphogen gradients in guiding the development of the main PD axis. Additional branches in multibranched (multiramous) appendage types apparently do not utilize the WG/DPP signaling system for their PD development. This further supports recent work on crustaceans and insects, that lead to similar conclusions.  相似文献   

5.
6.
Pattern formation during animal development is often induced by extracellular signaling molecules, known as morphogens, which are secreted from localized sources. During wing development in Drosophila, Wingless (Wg) is activated by Notch signaling along the dorsal-ventral boundary of the wing imaginal disc and acts as a morphogen to organize gene expression and cell growth. Expression of wg is restricted to a narrow stripe by Wg itself, repressing its own expression in adjacent cells. This refinement of wg expression is essential for specification of the wing margin. Here, we show that a homeodomain protein, Defective proventriculus (Dve), mediates the refinement of wg expression in both the wing disc and embryonic proventriculus, where dve expression requires Wg signaling. Our results provide evidence for a feedback mechanism that establishes the wg-expressing domain through the action of a Wg-induced gene product.  相似文献   

7.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

8.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

9.
Orthologs of the Hox genes Sex combs reduced ( Scr) and proboscipedia ( pd) are active in the developing labial appendages of all insect species tested. The remarkable variation among insect gnathal structures, particularly in the distal podomeres, suggests two Hox genes may enhance the adaptive potential of gnathal appendage morphology. Functional studies in the fruitfly Drosophila melanogaster, the flour beetle Tribolium castaneum and the milkweed bug Oncopeltus fasciatus show that cooperation between Scr and pb has been generally conserved, but specific mechanisms have been altered during evolution. Cross-regulation of pb by Scr is evident in Drosophila and Tribolium, the more closely related of the three species, but not in Oncopeltus. In all three species, pb function is restricted to the distal podomeres, but details are only known for Drosophila and Oncopeltus, two species exhibiting specialized stylate-haustellate mouthparts. Drosophila pb is required for distal Scr expression, and to repress the appendage patterning genes dachshund and Distal-less ( Dll). Oncopeltus pb has the novel capacity to specify leg fates. Little is known about distal functions of Tribolium pb. Hypomorphic mutations of the Tribolium pb ortholog maxillopedia can be arranged in a graded phenotypic series of palp to leg transformations along both the proximodistal and dorsoventral axes. Mid-embryonic expression profiles of Tribolium pb, Scr, wingless ( wg) and Dll genes were examined in maxillopedia hypomorphic and null mutant backgrounds. Levels of pb and Scr are significantly reduced in the distal appendage field. Tribolium pb therefore positively regulates distal Scr expression, a role that it has in common with Drosophila pb. Tribolium wg is normally down-regulated in the distal domain of the embryonic gnathal appendage buds. It becomes activated distally in maxillopedia hypomorphs. Repression of wg by pb has not been reported in the labial imaginal discs of Drosophila. Alterations of Tribolium Scr and wg expression occur in Dll-expressing cells, however, unlike in Drosophila labial imaginal discs, Dll expression appears unaffected in pb hypomorphic backgrounds. We conclude that the Hox genes Sex combs reduced and proboscipedia control an appendage organizer and cell autonomous fate determination during embryonic labial palp development in Tribolium.  相似文献   

10.
11.
Wnt genes encode evolutionarily conserved secreted proteins that provide critical functions during development. Although Wnt proteins share highly conserved features, they also show sequence divergence, which almost certainly contributes to the variety of their signaling activities. We previously reported that DWnt4 and wingless (wg), two divergent clustered Wnt genes, can have either antagonist or distinct functions during Drosophila embryogenesis. Here we provide evidence that both genes can elicit similar cellular responses during imaginal development. Ectopic expression of DWnt4 along the anterior/posterior (A/P) boundary of imaginal discs alters morphogenesis of adult appendages. In the wing disc, DWnt4 phenocopies ectopic Wg activity by inducing notum to wing transformation, suggesting similar signaling capabilities of both molecules. In support of this, we demonstrate that DWnt4 can rescue wg loss-of-function phenotypes in the antenna and haltere and is able to substitute for Wg in wing field specification. We also show that both genes are transcribed in overlapping domains in imaginal discs, suggesting that DWnt4 may cooperate with wg during limb patterning.  相似文献   

12.
Axis patterning and appendage development have been well studied in Drosophila melanogaster, a species in which both limb and segment morphogenesis are derived. In Drosophila, positional information from genes important in anteroposterior and dorsoventral axis formation, including wingless (wg) and decapentaplegic (dpp), is required for allocating and patterning the appendage primordia. We used RNA interference to characterize the functions of wg and dpp in the red flour beetle, Tribolium castaneum, which retains more ancestral modes of limb and segment morphogenesis. We also characterized the expression of potential targets of the WG and DPP signaling pathways in these embryos. Tribolium embryos in which dpp had been downregulated had defects in the dorsalmost body wall, but did not appear to have been globally repatterned and had normal appendages. Downregulation of wg led to the loss of segment boundaries, gnathal and thoracic appendages, and lateral head lobes, and to changes in the expression of dpp, Distal-less, and Engrailed. The functions of wg varied along both the anteroposterior and dorsoventral axes of the embryo. Phylogenetic comparisons indicate that the role of WNT signaling in segment boundary formation is evolutionarily old, but that its role in appendage allocation originated in the common ancestor of holometabolous insects.  相似文献   

13.
Insects can be grouped into mainly two categories, holometabolous and hemimetabolous, according to the extent of their morphological change during metamorphosis. The three thoracic legs, for example, are known to develop through two overtly different pathways: holometabolous insects make legs through their imaginal discs, while hemimetabolous legs develop from their leg buds. Thus, how the molecular mechanisms of leg development differ from each other is an intriguing question. In the holometabolous long-germ insect, these mechanisms have been extensively studied using Drosophila melanogaster. However, little is known about the mechanism in the hemimetabolous insect. Thus, we studied leg development of the hemimetabolous short-germ insect, Gryllus bimaculatus (cricket), focusing on expression patterns of the three key signaling molecules, hedgehog (hh), wingless (wg) and decapentaplegic (dpp), which are essential during leg development in Drosophila. In Gryllus embryos, expression of hh is restricted in the posterior half of each leg bud, while dpp and wg are expressed in the dorsal and ventral sides of its anteroposterior (A/P) boundary, respectively. Their expression patterns are essentially comparable with those of the three genes in Drosophila leg imaginal discs, suggesting the existence of the common mechanism for leg pattern formation. However, we found that expression pattern of dpp was significantly divergent among Gryllus, Schistocerca (grasshopper) and Drosophila embryos, while expression patterns of hh and wg are conserved. Furthermore, the divergence was found between the pro/mesothoracic and metathoracic Gryllus leg buds. These observations imply that the divergence in the dpp expression pattern may correlate with diversity of leg morphology.  相似文献   

14.
Insects such as Drosophila melanogaster undergo a derived form of segmentation termed long germband segmentation. In long germband insects, all of the body regions are specified by the blastoderm stage. Thus, the entire body plan is proportionally represented on the blastoderm. This is in contrast to short and intermediate germband insects where only the most anterior body regions are specified by the blastoderm stage. Posterior segments are specified later in embryogenesis during a period of germband elongation. Although we know much about Drosophila segmentation, we still know very little about how the blastoderm of short and intermediate germband insects is allocated into only the anterior segments, and how the remaining posterior segments are produced. In order to gain insight into this type of embryogenesis, we have investigated the expression and function of the homolog of the Drosophila gap gene hunchback in an intermediate germ insect, the milkweed bug, Oncopeltus fasciatus. We find that Oncopeltus hunchback (Of'hb) is expressed in two phases, first in a gap-like domain in the blastoderm and later in the posterior growth zone during germband elongation. In order to determine the genetic function of Of'hb, we have developed a method of parental RNAi in the milkweed bug. Using this technique, we find that Oncopeltus hunchback has two roles in anterior-posterior axis specification. First, Of'hb is required to suppress abdominal identity in the gnathal and thoracic regions. Subsequently, it is then required for proper germband growth and segmentation. In milkweed bug embryos depleted for hunchback, these two effects result in animals in which a relatively normal head is followed by several segments with abdominal identity. This phenotype is reminiscent to that found in Drosophila hunchback mutants, but in Oncopeltus is generated through the combination of the two separate defects.  相似文献   

15.
In Drosophila, antennae and legs are serially homologous appendages, and yet they develop into organs of very different structure and function. This implies that different genetic mechanisms operate onto a common developmental ground state to produce antennae and legs. Still few such mechanisms have been uncovered. During leg development, bowl, a member of the odd-skipped gene family, has been shown to participate in the formation of the leg segmental joints. Here we report that, in the antennal disc, bowl has a dramatically different role: bowl is expressed in the ventral antennal disc to prevent inappropriate expression of wg early during development. The removal of bowl function leads to the activation of wg in the dpp-expressing domain. This ectopic expression of wg, together with dpp, results in a new proximo-distal axis that promotes non-autonomous antennal duplications. The role of bowl in suppressing a supernumerary PD axis is maintained even when the antennal disc is homeotically transformed into a leg-like appendage. Therefore, bowl is part of a genetic program that suppresses the formation of supernumerary appendages specifically in the fly's head.  相似文献   

16.
Wingless (wg)/Wnt family genes encode secreted glycoproteins that function as signalling molecules in the development of vertebrates as well as invertebrates. In a survey of Wnt family genes in the newly sequenced Tribolium genome, we found a total of nine Wnt genes. In addition to wg or Wnt1, Tribolium contains orthologs of the vertebrate Wnt5-7 and Wnt9-11 genes. As in Drosophila, Wnt1, Wnt6 and Wnt10 are clustered in the genome. Comparative genomics indicates that Wnt9 is also a conserved member of this cluster in several insects for which genome sequence is available. One of the Tribolium Wnt genes appears to be a member of the WntA family, members of which have been identified in Anopheles and other invertebrates but not in Drosophila or vertebrates. Careful phylogenetic examination suggests an Apis Wnt gene, previously identified as a Wnt4 homolog, is also a member of the WntA family. The ninth Tribolium Wnt gene is related to the diverged Drosophila WntD gene, both of which phylogenetically group with Wnt8 genes. Some of the Tribolium Wnt genes display multiple overlapping expression patterns, suggesting that they may be functionally redundant in segmentation, brain, appendage and hindgut development. In contrast, the unique expression patterns of Wnt5, Wnt7 and Wnt11 in developing appendages likely indicate novel functions.  相似文献   

17.
Though initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva.  相似文献   

18.
Segmentation in long germband insects such as Drosophila occurs essentially simultaneously across the entire body. A cascade of segmentation genes patterns the embryo along its anterior-posterior axis via subdivision of the blastoderm. This is in contrast to short and intermediate germband modes of segmentation where the anterior segments are formed during the blastoderm stage and the remaining posterior segments arise at later stages from a posterior growth zone. The biphasic character of segment generation in short and intermediate germ insects implies that different formative mechanisms may be operating in blastoderm-derived and germband-derived segments. In Drosophila, the gap gene Krüppel is required for proper formation of the central portion of the embryo. This domain of Krüppel activity in Drosophila corresponds to a region that in short and intermediate germband insects spans both blastoderm and germband-derived segments. We have cloned the Krüppel homolog from the milkweed bug, Oncopeltus fasciatus (Hemiptera, Lygaeidae), an intermediate germband insect. We find that Oncopeltus Krüppel is expressed in a gap-like domain in the thorax during the blastoderm and germband stages of embryogenesis. In order to investigate the function of Krüppel in Oncopeltus segmentation, we generated knockdown phenotypes using RNAi. Loss of Krüppel activity in Oncopeltus results in a large gap phenotype, with loss of the mesothoracic through fourth abdominal segments. Additionally, we find that Krüppel is required to suppress both anterior and posterior Hox gene expression in the central portion of the germband. Our results show that Krüppel is required for both blastoderm-derived and germband-derived segments and indicate that Krüppel function is largely conserved in Oncopeltus and Drosophila despite their divergent embryogenesis.  相似文献   

19.
Anuran (frog) tadpoles and urodeles (newts and salamanders) are the only vertebrates capable of fully regenerating amputated limbs. During the early stages of regeneration these amphibians form a "blastema", a group of mesenchymal progenitor cells that specifically directs the regrowth of the limb. We report that wnt-3a is expressed in the apical epithelium of regenerating Xenopus laevis limb buds, at the appropriate time and place to play a role during blastema formation. To test whether Wnt/beta-catenin signaling is required for limb regeneration, we created transgenic X. laevis tadpoles that express Dickkopf-1 (Dkk1), a specific inhibitor of Wnt/beta-catenin signaling, under the control of a heat-shock promoter. Heat-shock immediately before limb amputation or during early blastema formation blocked limb regeneration but did not affect the development of contralateral, un-amputated limb buds. When the transgenic tadpoles were heat-shocked following the formation of a blastema, however, they retained the ability to regenerate partial hindlimb structures. Furthermore, heat-shock induced Dkk1 blocked fgf-8 but not fgf-10 expression in the blastema. We conclude that Wnt/beta-catenin signaling has an essential role during the early stages of limb regeneration, but is not absolutely required after blastema formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号