首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Activity of 124 neurons of the caudate nucleus during stimulation of the medial geniculate by infrequent (0.5 Hz) square electrical stimuli 0.3 msec in duration and ranging in intensity from 50 µA to 1 mA was investigated extracellularly in chronic experiments on cats. Responses were recorded from 54 neurons (43%). The main types of neuronal responses were phasic activation in the form of a single spike or spike discharge, initial activation followed by inhibition, and primary inhibition of unit activity. Responses of excitatory character predominated (81% of all responses). Their latent period varied in different neurons from 2.7 to 64 msec. Latent periods of responses of the same neuron always showed great variability, so that all the responses recorded could be considered to be orthodromic. The mode of the histogram of latent periods of excitatory responses lay between 9 and 12 msec. The latent period of the inhibitory response varied from 12 to 130 msec, and in most neurons with this type of response it was 40–60 msec. An increase in the strength of stimulation was accompanied by an increase in the regularity of the responses, an increase in the number of spikes in them, and shortening of their latent period. The character and structure of the response of the same caudate neuron to stimulation of the medial geniculate body and to presentation of clicks were usually identical. The latent period of responses to clicks was longer. The particular features of the functional connection of the medial geniculate body with the caudate nucleus as a polymodal nonspecific structure of the forebrain are discussed.  相似文献   

2.
Neural activity was recorded extracellularly at the base ofthe first antenna in 15 marine copepods. Controlled mechanicalstimuli were delivered with a vibrator driven by a waveformgenerator. Many species exhibited responses characterized bya large number of small spikes, while others were characterizedby the presence of a small number of large units. Two bay species,Labidocera madurae and Acartia fossae, exhibited large unitsthat could be easily distinguished from the background activityof smaller units. In these species, the antennal receptors firedshort latency (>5 ms) trains of one to several impulses inresponse to a brief mechanical stimulus and sustained trainsto a prolonged sinusoidal stimulus. They were extremely sensitiveto small displacements and sensitivity increased with stimulusfrequency. The receptors responded to stimuli between 40 and1000 Hz and receptors required displacement velocities of 20µm s–1 or more to fire. Displacements as small as10 nm were capable of triggering spikes. With an increase inthe amplitude of the displacement, a decrease in the latencyand an increase in the number of units recruited and/or firingfrequency was recorded. Phase-locking to oscillatory stimuliwas observed over a frequency range of 80–500 Hz. Neuralactivity increased in response to bending of individual setae.Setae appear innervated and structurally constrained to movementsin specific directions. These experiments suggest that (i) somecopepod setal receptors may be more nearly velocity detectorsthan purely displacement sensors, (ii) they may be capable ofsensing closely spaced stimuli, (iii) the patterns of responsemay code for intensity and duration of the stimulus, and (iv)receptors may be capable of supplying directional information.  相似文献   

3.
Gustatory sensitivities of the hamster's soft palate   总被引:4,自引:1,他引:3  
The response properties of taste receptors distributed on thesoft palate of the hamster were studied by recording integratedresponses from the greater superficial petrosal (GSP) nerveStimuli were concentration series of sucrose, NaCl, HCl andquinine hydrochloride (QHCl), and several other 0.1 M saltsand 0.5 M sugars. For comparison, integrated responses wererecorded from the chorda tympani (CT) nerve in many of the sameanimals from which recordings were made from the GSP. Responsesin each preparation were scaled relative to the phasic responseto 0.1 M NaCl and were then expressed for each nerve as a proportionof the total response magnitude (TRM)—the sum of all theresponses to the four concentration series. In this way, therelative response of each nerve to all of the stimuli couldbe evaluated. There were significant differences between theGSP and CT nerves in the responses to NaCl, QHCl and sucrose.Both the phasic and tonic responses to sucrose were larger inthe GSP than in the CT, whereas the tonic responses to NaCland QHCl were smaller. The slopes of the concentration-responsefunctions for NaCl, HCl and sucrose were significantly differentbetween the two nerves. The responses to 0.1 M sodium and lithiumsalts were significantly greater in the CT than in the GSP;whereas the 0.5 M sugars elicited responses in the GSP thatwere 2–3 times greater than in the CT nerve. A comparisonof the relative responsiveness to 0.3M sucrose, 0 3 M NaCl,0.01 M QHCl, 0.01 M HCl and distilled water among the GSP, CT,glossopharyngeal (IXth) nerve and superior laryngeal nerve (SLN)indicated that the vast majority of information about sucroseand NaCl is transmitted to the brainstem by the VIIth nerve. 1Present address: Department of Oral Physiology, Kagoshima UniversityDental School, Kagoshima 890, Japan  相似文献   

4.
Responses of 146 spontaneously active neurons of the reticular nucleus (R) and of 98 neurons of the ventral anterior (VA) nucleus of the thalamus to electrical stimulation of the skin of the footpads, to flashes, and to clicks were studied in experiments on cats immobilized with D-tubocurarine or myorelaxin. Stimulation of the contralateral forelimb was the most effective: 24.9% of R neurons and 31.3% of VA neurons responded to this stimulation. A response to clicks was observed in only 4.4% of R neurons and 2.4% of VA neurons. Nearly all responding neurons did so by phasic (one spike or a group of spikes) or tonic excitation. Depression of spontaneous activity was observed only in response to electrical stimulation of the skin. Depending on the site of stimulation, it was observed in 2.6–4.3% of R neurons and 1.7–2.1% of VA neurons tested. The latent period of the phasic responses of most neurons was 6–64 msec to electrical stimulation of the contralateral forelimb, 11–43 msec in response to stimulation of the hindlimb on the same side, 10–60 msec to photic and 8–60 msec to acoustic stimulation. Depending on the character of stimulation, 75.1–95.6% of R neurons and 68.7–97.6% of VA cells did not respond at all to the stimuli used. Of the total number of cells tested against the whole range of stimuli, 25% of R neurons and 47% of VA neurons responded to stimulation of different limbs, whereas 16% of R neurons and 22% of VA cells responded to stimuli of different sensory modalities. The functional role of the convergence revealed in these experiments is to inhibit (or, less frequently, to facilitate) the response of a neuron to a testing stimulus during the 40–70 msec after conditioning stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 563–571, November–December, 1975.  相似文献   

5.
Background and evoked neuronal activity in the cat sensorimotor cortex was recorded under a-chloralose anesthesia. Pairs of heterogeneous stimuli were applied, spaced at intervals of 0, 100, 200, 300, and 400 msec. A clicking sound, flashing light, and electroshock to the contralateral forepaw were used as stimuli. Partial or complete blockade of response to test stimuli presentations spaced 100–200 msec apart were observed when using stimulation of varying modality. The greatest test response was recorded at interstimulus intervals of 200–300 msec. Intracellular mechanisms of heterosensory interaction were investigated by applying the inhibitory transmitter antagonist picrotoxin microiontophoretically to the test cell to produce local attenuation of inhibitory effects. This substance also reduced the duration of blockage following the conditioning stimulus and the occurrence of peak level test response at a lower interstimulus interval than in the controls. Either a consistent increase in the number of spikes per response at one of the interstimulus intervals or a uniform reinforcement in unit response to several different interstimulus intervals were observed in a proportion of the cells. The contribution of intracortical inhibitory influences to the mechanisms of heterosensory interaction on neurons of the cat sensorimotor cortex is discussed in the light of our findings.A. A. Ukhtomskii Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 147–156, March–April, 1987.  相似文献   

6.
Spike responses of area 4 neurons in the projection area of the contralateral forelimb to acoustic stimulation (1 sec), which became the conditioned stimulus after training, and to dropping of the platform beneath the test limb, which served as reinforcing stimulus, were studied in trained and untrained cats. Responses only of those neurons which were activated during a passive movement caused by dropping of the platform were studied. In trained animals the number of these neurons which responded to the conditioned stimulus if a reflex occurred was 100%, and in the absence of conditioned-reflex movements to the conditioned stimulus it was 70%, much greater than the number of neurons responding to the same acoustic stimulus in untrained animals (45%). On peristimulus histograms of responses of the test neuron population in untrained and trained animals to acoustic stimulation (in the absence of movements) only the initial spike response with a latent period of under 50 msec and a duration of up to 100 msec could be clearly distinguished. In the presence of reflex movement multicomponent spike responses were observed: an initial spike response and early and late after-responses linked with performance of conditioned-reflex limb flexion. Early after-responses 100–200 msec in duration, appearing after a latent period of 100–150 msec, were linked to the time of application of the conditioned stimulus, whereas the appearance and duration of late after-responses were determined by the time of onset of conditioned-reflex movement. The magnitude of the neuronal response to reinforcement in trained animals does not depend on the appearance of the conditioned movement.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 93–102, January–February, 1985.  相似文献   

7.
Intensity Characteristics of the Noctuid Acoustic Receptor   总被引:1,自引:0,他引:1       下载免费PDF全文
Spiking activity of the more sensitive acoustic receptor is described as a function of stimulus intensity. The form of the intensity characteristic depends strongly on stimulus duration. For very brief stimuli, the integral of stimulus power over stimulus duration determines the effectiveness. No response saturation is observed. With longer stimuli (50 msec), a steady firing rate is elicited. The response extends from the spontaneous rate of 20–40 spikes/sec to a saturated firing rate of nearly 700 spikes/sec. The characteristic is monotonic over more than 50 db in stimulus intensity. With very long stimuli (10 sec), the characteristics are nonmonotonic. Firing rates late in the stimulus decrease in response to an increase in stimulus intensity. The non-monotonic characteristics are attributed to intensity-related changes in response adaptation.  相似文献   

8.
Forty-eight college students were assigned randomly to four groups in a 2 X 2 factorial arrangement of phasic conditional stimuli (same vs. different) and tonic conditional stimuli (same vs. different) to receive 2 days of classical conditioning with a transswitching procedure. Tonic stimuli were a 5-minute projected white triangle or circle; phasic stimuli were a 5-second red or green square superimposed over the tonic stimuli. There were six tonic stimulus segments each day, separated by 20-second periods of no stimulus, three containing six trials of the phasic stimulus paired with shock and three containing six trials of the phasic stimulus alone, in the counterbalanced order. Tonic responding at the onset of the tonic stimuli or during brief periods following its onset were recorded, along with phasic responses to the phasic stimuli. Responses included magnitude of skin conductance responses, frequency of unelicited skin conductance responses, and tonic heart rate. Both skin conductance measures of responding to the tonic stimuli differentiated significantly between positive and negative tonic segments during Day 2, but only in the group with two different tonic stimuli and one phasic stimulus ("standard" transswitching). This supported the hypothesis that tonic stimulus differentiation would be absent when two different phasic stimuli were present. The heart rate data did not support this hypothesis, showing tonic differentiation in both groups with two tonic stimuli. Phasic differentiation controlled by the different phasic stimuli was observed on Day 1; on Day 2, phasic differentiation was present only in the group with two tonic and one phasic stimuli and the group with one tonic and two phasic stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Responses of 75 single units in the goldfish olfactory bulb were analyzed in detail for their relationship to the time-course of the change in odor concentration during each odor stimulus. Odor stimuli were controlled for rise time, duration, and peak concentration by an apparatus developed for the purpose. This apparatus enabled aqueous odor stimuli to be interposed into a constant water stream without changes in flow rate. The time-course of the concentration change within the olfactory sac was inferred from conductivity measurements at the incurrent and excurrent nostrils. Temporal patterns of firing rate elicited by stimuli with relatively slow rising and falling phases could be quite complex combinations of excitation and suppression. Different temporal patterns were produced by different substances at a single concentration in most units. Statistical measures of the temporal pattern of response for a small number of cells at a given concentration were more characteristic of the stimulus substance than any of three measures of magnitude of response. The temporal patterns change when the peak concentration, duration, and rise time of the stimuli are varied. The nature of these changes suggests that the different patterns are due primarily to the combined influence of two factors: (a) a stimulus whose concentration varies over time and (b) a relationship between concentration and impulse frequency which varies from unit to unit. Some units produce patterns suggestive of influence by neural events of long time constant. The importance of temporal patterns in odor quality and odor intensity coding is discussed.  相似文献   

10.
Giant muscle fibers of the barnacle give graded, relativelyslow contractions, A plateau level, termed the unit response,occurs with stimuli of 3 msec, but pulses longer than 10–15msec give much greater tension or shortening. Repetitive stimulationwith pulses of 3 msec leads to a tetanus. The magnitude of activestate was determined, and found to be also graded in natureand slow to develop, though early in onset. The full developmentof active state requires 80–120 msec. A high level ofeffective series-elasticity was associated with the sarcomeresthemselves.  相似文献   

11.
This study examines the contribution of GABAergic inhibition to the discharge pattern and recovery properties of 110 bat inferior collicular neurons by means of bicuculline application to their recording sites. When stimulated with single pulses, 74 (67%) neurons discharged one or two impulses (phasic responders), 19 (17%) discharged three to ten impulses (phasic bursters) and 17 (16%) discharged impulses throughout the entire stimulus duration (tonic responders). Bicuculline application changed phasic responders into phasic bursters or tonic responders, increased the number of impulses by 10–2000% and shortened the response latency of most neurons. When stimulated with pairs of sound pulses, the recovery cycles of these neurons can be described as: (1) long inhibition (n = 49, 45%); (2) short inhibition (n = 41, 37%); and (3) fast recovery (n = 20, 18%) based upon the 50% recovery time that was either longer than 20 ms, between 10 and 20 ms or shorter than 10 ms. Bicuculline application shortened the 50% recovery time of most neurons by 11–2350% allowing them to respond to pairs of sound pulses at very short interpulse intervals. These data demonstrate that GABAergic inhibition contributes significantly to auditory temporal processing. Accepted: 18 April 1997  相似文献   

12.
 Responses of mechanosensory lateral line units to constant-amplitude hydrodynamic stimuli and to sinusoidally amplitude-modulated water movements were recorded from the goldfish (Carassius auratus) torus semicircularis. Responses were classified by the number of spikes evoked in the unit's dynamic range and by the degree of phase locking to the carrier- and amplitude-modulation frequency of the stimulus. Most midbrain units showed phasic responses to constant-amplitude hydrodynamic stimuli. For different units peri-stimulus time histograms varied widely. Based on iso-displacement curves, midbrain units prefered either low frequencies (≤33 Hz), mid frequencies (50–100 Hz), or high frequencies (≥200 Hz). The distribution of the coefficient of synchronization to constant-amplitude stimuli showed that most units were only weakly phase locked. Midbrain units of the goldfish responded to amplitude-modulated water motions in a phasic/tonic or tonic fashion. Units highly phase locked to the amplitude modulation frequency, provided that modulation depth was at least 36%. Units tuned to one particular amplitude modulation frequency were not found. Accepted: 10 July 1999  相似文献   

13.
Interaction between spike responses of 41 cerebellar cortical neurons to electrical stimulation of the two forelimbs with different intervals between stimuli were studied in cats anesthetized with chloralose and pentobarbital. The responsiveness of neurons with a phasic type of discharge to testing stimulation of the limb was reduced for 300–500 msec or longer after conditioning stimulation of the other limb. Interaction between the responses was less clear in neurons with a tonic type of response. Interaction was absent or was summating in character if the stimuli were applied at the same times. Only if the intertrial intervals were 50–150 msec was regular inhibition of the responses of tonic type to the testing stimulus observed. It is postulated that the nucleus of the inferior olive participates in the interaction between phasic unit responses during simultaneous stimulation of the two limbs or to stimulation separated by short intervals (under 30 msec). With longer intervals between stimuli, interaction between responses of either type is connected with involvement of the lateral reticular nucleus. In the process of interaction competitive relations may develop between responses caused by impulses reaching neurons of the cerebellar cortex along climbing and mossy fibers.  相似文献   

14.
The action of tonal stimuli of a characteristic frequency but of varied duration on 76 neurons of the mesencephalic auditory center (the torus semicircularis) of the frogRana temporaria was investigated. Responses to short stimuli (10 msec) of five groups of neurons differentiated by their responses to a long (300 msec) stimulus, were studied. Responses of some neurons were strengthened on shortening of the stimulus, while others responded only to tones of longer than the critical duration; this critical duration is independent of stimulus intensity over a wide range. The possible synaptic mechanisms lying at the basis of the observed effects are discussed.Acoustic Institute, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 13–20, January–February, 1973.  相似文献   

15.
Freshly ovulated (12 hr post hCG) F1 (C57BL/6 x CBA) hybrid mouse oocytes were parthenogenetically activated by repetitive elevation of Ca2+ induced by carefully controlled electrical pulses. Different patterns of stimulation were employed to examine the role of repetitive calcium changes on meiotic resumption and pronuclear development. In the first series of experiments oocytes received 33 electrical pulses of 1.8 kV/cm delivered every 4 min. The pulse duration decreased according to a negative exponential equation from a 900-microseconds first pulse to give a total pulse duration of 18.721 msec. The strength of calcium stimuli was varied by changing the concentration of CaCl2 in the medium. Ninety-eight percent of the oocytes stimulated with 12 microM calcium extruded the second polar body by the end of treatment and 92% completed pronuclear formation between 3.5 and 8 hr after the first pulse. For higher or lower Ca2+ concentrations the proportion of oocytes developing pronuclei decreased; the timing of pronuclear formation was retarded and the majority of oocytes failed to form a pronucleus after extrusion of the second polar body. In the second series of experiments, the strength of the calcium stimuli was modulated by changing the duration of the 33 electrical pulses given in the presence of 12 microM calcium. By increasing the total pulse duration to 33.958 msec, 100% of the oocytes activated and completed pronuclear formation between 3 and 5 hr after the first electric pulse. Stimulation protocols of lower total pulse duration (less than 18.721 msec) gave rise to high rates of partial activation (up to 95%). Examination of these partially activated oocytes showed metaphases with haploid sets of chromatids characteristic of third meiotic metaphase arrest. The results indicate that repetitive calcium stimuli can regulate the rate and extent of meiotic resumption and the time course of pronuclear formation during mouse oocyte activation. They suggest that meiotic resumption in mammalian oocytes is regulated by the amplitude and frequency of cytosolic calcium oscillations induced by the activating stimulus.  相似文献   

16.
Cat's differential duration threshold was investigated by the method of limits in a schedule of discrimination of empty durations. The standard stimulus was 4 sec long throughout the experiment. The comparison stimulus was reduced from 10 to 5 sec by 1 sec steps in successive blocks of 5 sessions. Standard and comparison stimuli, delimited by 50 msec auditory signals, were equiprobably distributed, in a random sequential order of presentation in each trial. After a 2 sec delay, an auditory signal indicated that reinforcement was available upon a response on one of two levers. Weber fractions around .25 were obtained. Strong response bias developed in most cats. Some consequences of the inhibition of responding induced by the procedure were considered.  相似文献   

17.
Investigation of single unit responses in the ventral cochlear nucleus of the Rhinolophidae to ultrasonic stimuli after destruction of the ipsilateral cochlea revealed two groups of neurons with latent periods of: 1) 2–4 msec and 2) 5–32 msec. The first group has responses of low thresholds confined to narrow regions of the spectrum, the second has responses with high thresholds in wide regions. Neurons of the second group are also characterized by small changes in latent period and number of action potentials in response to a change in stimulus strength, large changes in threshold at characteristic frequencies depending on the stimulus duration, but only slight dependence of the thresholds on the time of the increase in strength. The pathways of activation of these neurons and their functional role are discussed.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 32–40, January–February, 1972.  相似文献   

18.
I maintained female orb-weaving spiders, Argiope aurantia, in the laboratory and subjected them to low frequency phasic and continuous transverse vibrations of known frequency, amplitude, and position on the web. Stimuli were administered for periods of 1 min and all behaviour recorded. Pumping was associated with tactile contact to the spider's abdomen. Pumping increased with increasing frequency of phasic stimuli delivered to the web surface. Attack increased linearly with the log of stimulus frequencies between 0 and 14 Hz for stimuli delivered to the catching spiral. Dropping occurred only when high frequencies and amplitudes of stimuli were administered to the spider's abdomen and the hub of the web.  相似文献   

19.
Unit activity in the visual (area 17) and sensomotor (areas 4 and 6) cortex in response to an optical stimulus up to 1000 msec in duration was investigated by extracellular recording in acute experiments on cats anesthetized with chloralose (70 mg/kg body weight). Comparative analysis of the types of unitary responses and the durations of the intervals of functional changes showed that: 1) The number of neurons generating on-off responses was about 25% in the visual cortex and 100% in the sensomotor cortex; 2) the intervals of functional changes of the neurons were equal in length to the time intervals of on-off discharges; 3) together with a single time range (200–500 msec), for each area studied specific ranges also exist: from 0 to 200 msec for the visual cortex and from 500 msec and more for the sensomotor cortex; 4) the latent period of after-discharge is equal to the duration of the intervals of functional changes. The results were analyzed from the standpoint of reflection of temporal parameters of optical stimuli by neurons of the sensomotor cortex.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 7, No. 4, pp. 365–371, July–August, 1975.  相似文献   

20.
Responses of 117 single- or multi-units in the auditory cortex (AC) of bats (Myotis lucifugus) to tone bursts of different stimulus durations (1– 400 ms) were studied over a wide range of stimulus intensities to determine how stimulus duration is represented in the AC. 36% of AC neurons responded more strongly to short stimulus durations showing short-pass duration response functions, 31% responded equally to all pulse durations (i.e., all-pass), 18% responded preferentially to stimuli having longer durations (i.e., long-pass), and 15% responded to a narrow range of stimulus durations (i.e., band-pass). Neurons showing long-pass and short-pass duration response functions were narrowly distributed within two horizontal slabs of the cortex, over the rostrocaudal extent of the AC. The effects of stimulus level on duration selectivity were evaluated for 17 AC neurons. For 65% of these units, an increase in stimulus intensity resulted in a progressive decrease in the best duration. In light of the unusual intensity-dependent duration responses of AC neurons, we hypothesized that the response selectivities of AC neurons is different from that in the brainstem. This hypothesis was validated by results of study of the duration response characteristics of single neurons in the inferior colliculus. Accepted: 8 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号