首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hierarchical agglomerative polythetic clustering of vegetation data for 51 sites from Brian Pastures Research Station, south-east Queensland, Australia, produced site and species groups that supported those formed during a previous intuitive mapping survey. On the basis of floristic composition, these analyses suggested the possible amalgamation of some map units. However, their segregation into separate units was justified on the basis of having distinct photopatterns and physiographic positions in the landscape. The classifications of the trees only (55 species) and woody plants only (115 species) data sets produced site groupings of high similarity to those constructed by the mapping survey. The addition of the herbaceous plants (266 additional species, of which 70% were annual species) tended to dominate the analyses, and produce site groupings that were less similar to the mapping groups. The distribution of many annual species appeared to be independent of the perennial plant species and underlying substrate. In wooded communities, herbaceous plants have only a minor influence on photopattern, which is the primary determinant of the mapping classification. Binary data retained a large percentage of the information contained in the quantitative data. The extra effort of gathering herbaceous data may not be justified for a broad scale mapping project, but is required for comprehensive nature conservation surveys, flora inventory, and vegetation monitoring purposes.  相似文献   

2.
The effect of sampling strategy on animal-habitat relationships was evaluated with data collected from a 50 ha area containing a sequence of tropical vegetation types. Sampling sites were located randomly within defined habitat types (i.e. stratified random sampling) and systematically irrespective of habitat type. At each site the fauna, comprising birds (63 species), reptiles (15 species), amphibia (13 species) and grasshoppers (32 species) were sampled for the abundance of species. Simultaneously, vegetation and related data, comprising vertical structure (52 attributes), ground surface condition (18 attributes), plant lifeform (18 attributes) and the abundance of plant species (200) were recorded. Random and systematic data matrices, comprising sites defined by animal or vegetation attributes, were reduced dimensionally by correspondence analysis. Animal first dimension vectors were then regressed on the first dimension vectors of vegetation structure, lifeform and floristics, respectively. With stratified random sampling, vegetation structure (comprising vertical and ground attributes) and lifeform explained most of the variation in the fauna; floristics were not a significant factor. On the other hand with the systematic data, fioristics explained almost all of the variation in animal abundance and distribution. By removing the ecotonal sites from the systematic data set and recalculating vectors, the animal—vegetation relationships became similar to those generated from the stratified random sampling data. Clearly, the sampling strategy employed in a faunal survey has a major influence on the inventory of species, and on the relative importance of vegetation structure, lifeform and floristics in explaining animal distribution. The presence of ecotones in the systematic data set was highlighted as the key to the difference between the sampling strategies.  相似文献   

3.
西双版纳森林植被研究   总被引:1,自引:0,他引:1       下载免费PDF全文
西双版纳是世界生物学多样性保护的关键和热点地区,倍受国际学术界的关注。笔者依据30多年来对西双版纳植被的调查,结合植物群落生态学与植物区系地理学研究,并参考世界类似热带植被的研究成果,对西双版纳植被的分类、物种组成、群落生态表现和植物区系特征等作了系统探讨,还进一步分析比较了其与世界类似热带森林植被的关系。结果显示,西双版纳的森林植被共包括32个较为典型的群系,且分属于7个主要的植被型,即热带雨林、热带季节性湿润林、热带季雨林、热带山地(低山)常绿阔叶林、热带棕榈林、暖热性针叶林和竹林。本文对西双版纳植被进行的全面记录和系统归纳,可为科学研究、生物多样性保护和自然保护区的管理提供参考。  相似文献   

4.
Vegetation maps are critical biodiversity planning instruments, but the classification of vegetation for mapping can be strongly biased by survey design. Standardization of survey design across different vegetation types is therefore increasingly recommended for vegetation mapping programs. However, some vegetation types have complex small‐scale vegetation patterns that are important in characterizing these vegetation types, and standard designs will often not capture these patterns. The objective of this paper was to investigate the magnitude of potential map bias that results from survey design standardization and recommend approaches to deal with this bias. We surveyed upland swamps of the Greater Blue Mountains World Heritage Area Australia using two contrasting survey designs, including the standard 400 m2 single quadrat design recommended and used by authorities. We then derived a classification for these swamps and tested the effect of survey design on this classification, species richness and the type of species detected (obligate or facultative swamp species). Species richness and species type were not significantly different among survey techniques. However, more than 40% of swamps clustered differently among survey designs. Thus, one of the 10 derived communities (which is floristically consistent with a previously mapped endangered community) was indistinct, and some individual swamps misclassified using the standard survey design. An effect of landscape position on swamp floristic patterns and a significant trend for high similarity scores among swamps surveyed with multiple small quadrats compared to the standard survey design was also determined. Australian upland swamps are classified at the global scale as shrub‐dominated wetlands, and complex floristic patterns have been recorded in shrub‐dominated wetlands in both northern and southern hemispheres. We therefore advocate either multiple survey designs or different survey standards for upland swamp communities and other vegetation types that have complex floristic patterns at small scales.  相似文献   

5.
This study presents an analysis of floristic composition patterns for limestone vegetation from three Caribbean islands: Hispaniola, Mona, and Puerto Rico. The physical setting of these communities varies from very dry to wet climates, and from ridgetops, slopes, to plateaus. Consequently, vegetation communities have variable species composition. The questions addressed were: (1) What are the patterns of species composition among limestone vegetation types based on a parsimony analysis of species assemblages (PASA) and how congruent are they widi geography, climate, topography, and vegetation physiognomy? and (2) How do PASA patterns compare to floristic patterns obtained with a classification (UPGMA) and an ordination (NMS)? The main distinction of floristic categories was between communities of humid and dry climates, followed by a finer separation of communities congruent with topography; vegetation physiognomy corresponded with both. PASA, UPGMA, and NMS produced highly coincident floristic groups; however, affinities among groups were different. Advantages of PASA over UPGMA and NMS are that PASA produces groupings strictly based on the shared species and provides different measures of support for floristic groups. The three techniques indicated that the humid and dry limestone areas of Puerto Rico had floristically divergent dry‐type vegetation, even when they were structurally and physiognomically convergent. Also, floristic affinities of dry communities in Puerto Rico were stronger with dry communities on other islands than to more humid communities on the same island; thus, humidity regime is stronger than geography in promoting floristic links among limestone vegetation communities of die Caribbean. Almost every conclusion obtained from UPGMA and NMS was also taken from PASA, and so all diree techniques are compatible. The methodological, theoretical, and interpretive simplicity of PASA is what makes it an attractive procedure for studies that examine composition patterns.  相似文献   

6.
In the Mississippi River Alluvial Valley (MAV), complete alteration of river‐floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (afforestation) and local hydrologic enhancement on reclaimed croplands. Early assessments identified factors that influenced whether planting plus tree colonization could establish an overstory community similar to natural bottomland forests. The extent to which afforested sites develop typical understory vegetation has not been evaluated, yet understory composition may be indicative of restored site conditions. As part of a broad study quantifying the ecosystem services gained from restoration efforts, understory vegetation was compared between 37 afforested sites and 26 mature forest sites. Differences in vegetation attributes for species growth forms, wetland indicator classes, and native status were tested with univariate analyses; floristic composition data were analyzed by multivariate techniques. Understory vegetation of restoration sites was generally hydrophytic, but species composition differed from that of mature bottomland forest because of young successional age and differing responses of plant growth forms. Attribute and floristic variation among restoration sites was related to variation in canopy development and local wetness conditions, which in turn reflected both intrinsic site features and outcomes of restoration practices. Thus, understory vegetation is a useful indicator of functional progress in floodplain forest restoration.  相似文献   

7.
Most plant species feature similar biochemical compositions and thus similar spectral signals. Still, empirical evidence suggests that the spectral discrimination of species and plant assemblages is possible. Success depends on the presence or absence of faint but detectable differences in biochemical (e.g., pigments, leaf water and dry matter content) and structural properties (e.g., leaf area, angle, and leaf structure), i.e., optical traits. A systematic analysis of the contributions and spatio-temporal variability of optical traits for the remote sensing of organismic vegetation patterns has not yet been conducted. We thus use time series of optical trait values retrieved from the reflectance signal using physical models (optical trait indicators, OTIs) to answer the following questions: How are optical traits related among patterns of floristic composition and reflectance? How variable are these relations in space and time? Are OTIs suitable predictors of plant species composition?We conducted a case study of three temperate open study sites with semi-natural vegetation. The canopy reflectance of permanent vegetation plots was measured on multiple dates over the vegetation period using a field spectrometer. We recorded the cover fractions of all plant species found in the vegetation plots and extracted gradients of species composition from these data. The physical PROSAIL leaf and canopy optical properties model was inverted with random forest regression models to retrieve time series of OTIs for each plot from the reflectance spectra. We analyzed these data sets using correlation analyses. This approach allowed us to assess the distribution of optical traits across gradients of species composition. The predictive performance of OTIs was tested in relation to canopy reflectance using random forest models.OTIs showed pronounced relationships with floristic patterns in all three study sites. These relationships were subject to considerable temporal variability. Such variability was driven by short-term vegetation dynamics introduced by local resource stress. In 72% of all cases OTIs out-performed the original canopy reflectance spectra as indicators of plant species composition. OTIs are also easier to interpret in an ecological sense than spectral bands or features. We thus conclude that optical traits retrieved from reflectance data have a high indicative value for ecological research and applications.  相似文献   

8.
Vegetation pattern and microtopography were examined on a mountain slope with a rotational type landslide scar on Mt Kiyosumi, central Japan. Similarities of distribution patterns among 55 woody species were calculated using Cole's species association coefficient, and based on them, seven vegetation units were classified using cluster analysis and principal coordinates analysis. The seven vegetation units coincide with seven microtopographical facets at 101 to 102 m2 order. Furthermore, these vegetation units were grouped into three higher categories by reciprocal averaging and principal coordinates analysis. They were ridge slopes, surrounding slopes and landslide slopes. The three categories were arranged in the above-mentioned order based on similarity in floristic composition. In the ridge slopes, late-successional trees and deciduous trees had high relative basal areas. In the surrounding slopes,Euptelea polyandra and other deciduous trees had high relative basal areas. In the landslide slopes,E. polyandra and deciduous shrubs had high relative basal areas. The density and the age distributions ofE. polyandra, a typical pioneer tree which invades disturbed sites, suggested that the severity of soil surface disturbances increase in this order. The disturbance regime explains the vegetation pattern on the study site, where the rotational type landslide had occurred.  相似文献   

9.
A floristic inventory of woody plants was carried out to analyse the relationships between floristic similarity and geographical distance, and to compare the effect of land use history on the floristic composition between sites. Three lowland and two submontane sites were studied in Madidi, Bolivia. In one site, there is evidence of an Inca ruin. A total of 877 species and 12,822 individuals of woody plants with a diameter at breast height ≥2.5 cm were recorded in 44 0.1–ha plots. Fisher’s Alpha index values were slightly higher for the lowlands than for the submontane. Floristic similarity was higher within sites than between sites as measured by both Sørensen and Steinhaus indexes. The fact that the 30 most important species per site (totalling 94 species) accounted for 61.7% of total individuals, support the hypothesis that Amazonian plant communities are dominated by a limited set of species, genera and families. On the other hand, 18 out of the 94 species were reported in a single site, suggesting that some species are patchy in distribution and may be environmentally determined. Both the oligarchy and environmental-determinism hypotheses can be complementary in order to understand floristic patterns of this region. The Ruins submontane site is floristically the most distinct, and past human disturbance is likely to be the main reason. Since species diversity (ranging from 53 to 122 species per plot) and density (ranging from 157 to 503 per plot) are highly variable in Madidi, to characterize the diversity of a site, it is necessary to quantify an average of 10 0.1-ha plots in a relatively small geographical area.  相似文献   

10.
There has been regulatory concern over the appropriate length of time to monitor wetland sites restored or created as compensation for impacts permitted by a U.S. Clean Water Act permit. However there is very little longitudinal research on wetland compensation sites, and conclusions on compensation site development are usually drawn from the analysis of a chronosequence of sites of different ages. This approach has limitations, given the extent of changes in wetland compensation practices and performance standards over the past few decades. In this study we conducted vegetation surveys of 22 wetland compensation sites in a rapidly developing part of the Minneapolis-St. Paul metropolitan area in 1997 and 2010. We present data on changes over time in floristic richness and cover at the site level and at the level of wetland community type within each site. Our findings do not support the assumption that wetland compensation sites progress on a trajectory toward increasing diversity, floristic quality, or native cover over time. We find that, when data from all sites are considered together, emergent communities have suffered significant declines in both floristic quality and native plant cover, while wet meadow communities have gained species richness but not species diversity. There is some evidence that site richness and cover characteristics are converging toward a regional mean over time, as the species composition of wet meadows became significantly more similar over the survey period, and all community types have significant increases in woody cover. Our study suggests the importance of selecting appropriate compensation sites that avoid foreseeable hydrologic stresses, and does not support the position that 5 years of monitoring can assure the ongoing biotic integrity of wetland compensation sites.  相似文献   

11.
The cerrado has been identified as one of the richest and most threatened biomes of the world, but few phytogeographical studies have been undertaken in the region. A total of 70 land systems based on climate, landscape and soils have been identified in the region, but it remains to be seen if the distribution and structure of the plant communities support these divisions. The aim of this work was to compare the floristic and structural similarity of cerrado sensu stricto within and between three physiographic units, named Pratinha, Veadeiros and São Francisco, which contain six land systems in central Brazil and cover 10 degrees of latitude and five degrees of longitude. The woody vegetation of 15 selected sites of the cerrado sensu stricto physiognomy was surveyed under a standardized methodology. The number of species per site varied from 55 to 97, with most sites having around 60 to 70 species, and Shannon´s diversity indices ranged from 3.44 to 3.73, with most sites around 3.5 suggesting high alpha diversity. Sørensen´s floristic similarity index was high, with all Figures above 0.5 between the sites in the same land system in each physiographic unit but low between sites in different land systems in the Veadeiros. Czekanowski similarity indices were lower than Sørensen’s in the comparisons due to a high structural differentiation between the sites. There is a large overlap in species occurrence in the sites but the size of their populations is very different at each site. Therefore, the high beta diversity is mostly due to differences in abundance of species between sites. The sites were separated by physiographic units, considering the first three divisions of TWINSPAN classification. The first axis of DCA ordination showed a gradient going from the cerrado on deep soils in Pratinha, through to those on sandy soils in São Francisco and ending on the shallower soils of the Veadeiros. Land systems conformed well with the floristic and structural variations of the vegetation, indicating their potential use in designing a network of conservation areas in the cerrado region and as a basis for decision-making on management.  相似文献   

12.
One of the few important empirical generalizations regarding herbaceous plant systems has been the demonstration that species richness is related to standing crop with maximum richness occurring at moderate levels of standing crop. This relationship is normally demonstrated by comparing among vegetation types (i.e., vegetation with different dominants). We undertook this study to test whether the species richness-standing crop relationship was evident at a finer-grained level of organization, the within vegetation type level. Fifteen wetland sites were sampled in eastern Canada and species richness and standing crop determined in each of 224 0.25 m2 quadrats. Each site was relatively homogeneous in terms of the dominant species present and were therefore categorized as single vegetation types. However, as a group, the sites comprised a wide range of vegetation types.A second order polynomial regression indicated a significant bitonic relationship between species richness and standing crop at the among-vegetation types scale, that is, when all 15 sites were combined. At the within-vegetation type level, however, no significant relationships were observed (p>0.05). The results indicate that the model of species richness proposed by Grime has predictive power at a coarse-grained level of organization, among vegetation types, but does not survive the transition to a finer-grained level of organization, the within vegetation type level. Therefore, the higher level processes which structure species richness patterns among vegetation types are not the same processes which determine richness patterns within a vegetation type.  相似文献   

13.
论滇南西双版纳的森林植被分类   总被引:3,自引:0,他引:3  
朱华 《云南植物研究》2007,29(4):377-387
本文基于多年研究成果的总结,对西双版纳森林植被的分类、主要植被类型及其特征进行了系统归纳,并讨论了它们与世界类似热带森林植被的关系。以群落的生态外貌与结构、种类组成和生境特征相结合作为植被分类的原则和依据,可以将西双版纳的热带森林植被分类为热带雨林、热带季节性湿润林、热带季雨林和热带山地常绿阔叶林四个主要的植被型,包括有至少二十个群系。热带雨林包括热带季节雨林和热带山地(低山)雨林二个植被亚型。热带季节雨林具有与赤道低地热带雨林几乎一样的群落结构和生态外貌特征,是亚洲热带雨林的一个类型,但由于发生在季风热带北缘纬度和海拔的极限条件下,受到季节性干旱和热量不足的影响,在其林冠层中有一定比例的落叶树种存在,大高位芽植物和附生植物较逊色而藤本植物和在叶级谱上的小叶型植物更丰富,这些特征又有别于赤道低地的热带雨林。热带山地雨林是热带雨林的山地亚型,是该地区热带山地较湿润生境的一种森林类型,它在植物区系组成和生态外貌特征上类似于热带亚洲的低山雨林,隶属于广义热带雨林植被型下的低山雨林亚型。热带季节性湿润林分布在石灰岩山坡中、上部,在群落外貌上类似热带山地常绿阔叶林但在植物区系组成上与后者不同,它是石灰岩山地垂直带上的一种植被类型。热带季雨林是分布在该地区开阔河谷盆地及河岸受季风影响强烈的生境的一种热带落叶森林,是介于热带雨林与萨王纳之间的植被类型。热带山地常绿阔叶林(季风常绿阔叶林)是西双版纳的主要山地植被类型,它分布在热带季节雨林带之上偏干的山地生境。它在植物区系组成上不同于该地区的热带季节雨林,在生态外貌特征上亦不同于热带山地雨林,是发育在受地区性季风气候强烈影响的热带山地的一种森林植被类型。  相似文献   

14.
The relationship between plant species richness and the space organization of the community at different small scales was studied. The study was based on 51 sites distributed along a belt from Central Spain to Portugal. Each site was analyzed with a transect cutting across the boundary between two neighboring patches of shrubland and grassland. Local spatial organization of vegetation was analyzed at different levels of detail and each transect was divided into successively smaller portions. The first division coincides with a physiognomic perception of the site in two patches (shrubland and grassland). The average spatial niche width of the species was used to calculate the spatial organization of the vegetation of each division in each site. The correlation between species richness and spatial organization depended on the block size under consideration. A physiognomic criterion, sectorizing the sites into patches of shrubland and grassland, determines noteworthy floristic changes but does not enable us to express satisfactorily the variability in plant richness. In order to account for this variation, other factors must be taken into account which act at a more detailed small-scale and which determine the internal variability of these patches. In the case studied, the species richness of the sites increases along with an increase in the percentage of species whose occupation of the space is relatively restricted within the site. Many of these species are, however, frequent within the whole of the territory studied. The results highlight the importance of the level of local scale at which the factors influencing occupation of the space, and consequentially, plant richness, preferentially act. This circumstance ought to be taken into consideration in strategies for the conservation of biological diversity, and based on the delimitation of protected spaces with criteria frequently linked to the physiognomy of the vegetation.Nomenclature: Follows T.G. Tutin et al. 1964-1980. Flora Europaea. Cambridge University Press, Cambridge  相似文献   

15.
ZHU Hua 《Plant Diversity》2007,29(4):377-387
Xishuangbanna of southern Yunnan is a region of extremely interest to biologists and also a hotspot for biodiversity conservation . It is located in a transitional zone from tropical Southeast Asia to temperate East Asia biogeographically. The present paper reviewed vegetation types of Xishuangbanna and suggested a revised classification system based on theupdated study results over the last two decades . By combining physiognomic and floristic characteristics with ecological performances and habitats , the primary forest vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes , i. e. tropical seasonal rain forest in the lowlands and tropical montane rain forest on higher elevations. The tropical seasonal rain forest in this region shows similar forest profile and physiognomic characteristics to those of equatorial lowland rain forests and is a type of world tropical rain forest. Because of conspicuous similarity on floristic composition , the tropical seasonal rain forest in Xishuangbanna is a type of tropical Asian rain forest . However , since the tropical seasonal rain forest occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in maintaining some deciduous trees in the canopy layer , fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll . It is a type of semi-evergreen rain forest at the northern edge of the tropical zone . The tropical montane rain forest occurs in wet montane habitats and is similar to the lower montane rain forests in equatorial Asia in floristic composition and physiognomy . It is a variety of lower montane rain forests at the northern tropical edges of tropical rain forests . The tropical seasonal moist forest occurs on middle and upper limestone mountains and is similar to the tropical montane evergreen broad-leaved forest of the region in physiognomy, but it differs from the latter in floristic composition. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad- leaved forest is the main vegetation type in mountain areas . It is dominated by the tree species of Fagaceae , Euphorbiaceae , Theaceae and Lauraceae in majority. It differs from the tropical montane rain forests in lack of epiphytes and having more abundant lianas and plants with compound leaves . It is considered to be a distinct vegetation type in the northern margin of mainland southeastern Asia controlling by a strong monsoon climate, based on its floristic and physiognomic characteristics.  相似文献   

16.
The development and current status of mapping the vegetation of Brazil is discussed. This includes the manner of portraying the vegetation on maps, especially with regard to physiognomy and structure, the floristic composition and ecological relations. A slow beginning has given way to a rapid though uneven development. Recent government efforts tend to correct this.  相似文献   

17.
A floristic classification for monsoon rain forest vegetation in the Northern Territory, Australia, is derived based on comprehensive floristic inventory and environmental data. Allied aims include relating the floristic classification to Australia-wide structural and floristic schema, documenting species richness, and exploring site-environmental relations. TWINSPAN classification and complementary DCA analysis of a data set comprising 1219 sites x 55 9 rain forest taxa yielded 16 floristic assemblages. A diagnostic floristic key to these groups is presented. Eight groups describe rain forests associated with sites of perennial moisture; eight groups are associated with seasonally dry landforms. The structural typology of Australian rain forests is found wanting when applied to relatively simple monsoon rain forest communities. Rain forest patches are mostly less than 5 ha in size; maximum species richness is ca. 135 species per patch. Two major environmental gradients are identified through indirect gradient analysis: a primary latitudinal-moisture gradient and a subsidiary topographic-drainage gradient. Given the demonstrated tolerance of monsoon rain forest to a broad range of environmental conditions, the question remains: why is this vegetation type so restricted in occurrence in northern Australia?  相似文献   

18.
Wastelands are likely to host a significant part of urban floristic diversity but have received limited attention because they are not considered interesting green zones. Here, we explore the potential role of wastelands in maintaining urban biodiversity to help define effective urban management plans. We quantified floristic diversity in 98 wasteland sites of Hauts-de-Seine, one of the most densely populated areas in France, and characterized the environmental parameters and spatial distribution of sites to identify some of the factors that influence plant species composition and to explore the impact of urban environment on the floristic interest of wastelands. Their floristic richness represented 58% of the total richness observed in the whole study area. Site richness depended on site area (the largest sites were the richest) and site age, with a maximum in sites of intermediate age (4–13 years). In the largest sites only (>2,500 m2), the floristic distance among sites was positively correlated with geographic distance, which suggests that migration of species among large sites partly controls local floristic composition. In contrast, the environmental distance among sites was not correlated with floristic distance. Finally, we showed that the presence of collective and individual dwellings within 200 m of a wasteland decreased its floristic rarity, whereas the presence of rivers or ponds increased it. We derive several recommendations to optimize the management of wastelands with respect to conservation of urban biodiversity.  相似文献   

19.
Moe  Bjørn  Botnen  Astri 《Plant Ecology》2000,151(2):143-159
The epiphytic vegetation on 24 pollarded trees of Fraxinus excelsior at the farm Grinde, Leikanger, western Norway was investigated. Each trunk was divided into a basal zone, a middle zone and a top zone. In each zone the four different aspects were analysed (12 sampling units from each trunk). Within a total of 276 sampling units, 162 taxa were recorded (99 lichens, 56 bryophytes, 7 vascular plants). The trunks were covered mainly by an old, thick and occasionally swollen bark, but decaying wood did not occur. Their habitats were different, and each trunk was classified into one of four categories: open meadow, wooded hay meadow, deciduous wood, and spruce plantation. A climate station was established in each habitat to measure important parameters. The floristic and environmental data were analysed by canonical correspondence analysis (CCA). The floristic data were classified into eight TWINSPAN groups that have been taken into account in the CCA diagrams. At Grinde all the pollarded trunks grew under fairly homogeneous conditions during a more extensive agricultural period until about 1962. The deciduous wood developed by tree colonization on old meadows and wooded hay meadows, whilst spruce has been planted in a small part of the area. Floristic differences in the epiphytic vegetation between the four different habitats were found, which suggests that changes in the vegetation have developed during the last two or three decades. The spruce plantation was the most shady habitat having a very sparse epiphytic vegetation, mainly remnants from vegetation established during more open area conditions.  相似文献   

20.
The associations between floristic and palynological richness and landscape structure were studied based on modern pollen?Cvegetation data from a patchy cultural landscape in southern Estonia (northern temperate vegetation zone). Nine study sites (small lakes and their surrounding vegetation) represent land cover gradient from closed forest to semi-open vegetation. Floristic richness (number of species) and floristic richness of pollen types (number of pollen-equivalent taxa) were used to describe the vegetation within the radius of 250?m from the pollen sampling sites. Palynological richness was calculated to describe the modern pollen samples diversity. Landscape structure was estimated on the basis of landscape openness and three landscape diversity measures: richness of community patches, Simpson evenness of community patches and Simpson diversity of community patches. To study the effect of the spatial scale of landscapes on the vegetation?Clandscape and pollen?Clandscape associations, landscape structure was estimated within eight radii (250?C2,000?m) around each lake. The results showed that landscape openness was the most important determinant of both floristic richness and palynological richness in southern Estonia and that landscape diversity estimated by Simpson diversity index was also significantly associated with the richness estimates. Floristic and palynological richness were significantly positively correlated with landscape structure within the radii greater than 1,000?m from the pollen sampling sites, which is similar to the estimated Relevant Source Area of Pollen in southern Estonia. We conclude that within one floristic or climatic region, palynological richness gives reliable estimates about the variation in floristic richness and landscape structure; however, caution must be taken when comparing pollen-inferred vegetation diversities from different regions or when interpreting fossil pollen records from times with highly different vegetation associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号