首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quartz crystal microbalance with dissipation monitoring (QCM-D) was used to monitor the deposition of adhesive extracellular polymeric substances (EPS) employed by the marine biofouling diatoms Craspedostauros australis Cox and Amphora coffeaeformis Cleve during initial adhesion and subsequent motility. Upon injection into the QCM chamber, initial negative frequency (f) shifts and positive dissipation (D) shifts were measured that correlated to cells impacting and adhering to the QCM sensor surface. Following this "initial adhesion" response, f continued to decrease while D increased logarithmically. Rather than the result of any cell morphological alterations at the substrate surface, the shifts were correlated to the time-dependent deposition of EPS upon the substrate surface as a result of cellular motility, or gliding. Experiments utilizing comparable cell concentrations of the diatom species C. australis and A. coffeaeformis revealed significant differences between the parameter responses recorded, where A. coffeaeformis produced Deltaf and DeltaD values of -32 Hz and 6.6, and C. australis produced values of -82 Hz and 42, respectively, after 20 h post-inoculation. The viscoelastic properties of the adhered EPS adlayer from both species were examined via a Deltaf/DeltaD plot, providing reproducible signature "ratio" values for each species that likely correlate to differences in EPS interactions with the substrate that may be associated directly to differences in the fouling potential of the two species. There is a distinct lack of knowledge regarding the chemical nature of the adhesive polymers engaged, and few quantitative techniques are applicable to the study of diatom EPS. We propose that QCM-D may be a useful tool in identifying differences in the EPS employed by diatoms of different fouling potential.  相似文献   

2.
The quartz crystal microbalance (QCM) technique has been applied to the real time monitoring of endothelial cell (EC) adhesion and spreading on the QCM gold surface. We previously showed that the measured QCM Deltaf and DeltaR shifts were due to cells adhering to the gold crystal surface, requiring proteolytic enzyme treatment to be removed from the surface, in order for the Deltaf and DeltaR shifts to return to zero. In the present report, we demonstrate the quantitative dependence and saturation of the measured Deltaf and DeltaR shifts on the number of firmly attached ECs as measured by electronic counting of the cells. We demonstrate through a light microscope simulation experiment that the different Deltaf and DeltaR regions of the QCM temporal response curve correspond to the incident ECs contacting the surface, followed by their adhesion and spreading, which reflect cellular mass distribution and cytoskeletal viscoelasticity changes. Also, we demonstrate that the dose response curve of Deltaf and DeltaR values versus attached EC number is more sensitive and possesses less scatter for the hydrophilically treated surface compared to the native gold surface of the QCM. For both surfaces, a Deltaf and DeltaR versus trypsinized, attached EC number plot 1 h post-seeding exhibits a sigmoid curve shape whereas a similar plot 24 h post-seeding exhibits a hyperbolic curve shape. This number dependence suggests cell-cell cooperativity in the initial cell adhesion and spreading processes. These QCM data and our interpretation are corroborated by differences in cell appearance and spreading behavior we observed for ECs in a light microscope fluorescence simulation experiment of the cell density effect. For a stably attached EC monolayer at 24 h post-addition, steady-state Deltaf and DeltaR values are higher and exhibit saturation behavior for both the hydrophilically treated gold surface as compared to the untreated surface. The steady-state 24 h Deltaf and DeltaR values of stably attached ECs are shifted from the 1 h attached ECs. The 24 h values are characteristic of a more energy-dissipative structure. This is consistent with the time-dependent elaboration of surface contacts in anchorage-dependent ECs via the attachment of intregrins to underlying extracellular matrix. It is also in agreement with the known energy dissipation function of the ECs that cover the interior of blood vessels and are exposed to continuous pulsatile blood flow.  相似文献   

3.
A quartz crystal microbalance (QCM) cell biosensor utilizing living endothelial cells (ECs) or human breast cancer cells (MCF-7) adhering to the gold QCM surface was used to study the relative contributions of the cells and their underlying extracellular matrix (ECM) to the measured QCM Deltaf and DeltaR shifts. The ECM represents a natural biomaterial that is synthesized by the cells to enable their attachment to surfaces. We followed the detachment of the ECs or MCF-7 cells from their ECM using a nonproteolytic method and were able to apportion the total frequency, Deltaf, decrease of the biosensor into contributions from cell attachment and from the intact underlying ECM. We also demonstrated that the Deltaf shift remaining after EC removal corresponds to ECM as determined by light microscopic visualization of the stained protein. During the process of cell detachment, we observed a novel transient increase in viscoelastic behavior expressed as a transient increase in the motional resistance, DeltaR, parameter. Then we showed via a simulation experiment using ECs stained with fluorescent rhodamine-labeled phalloidin, an actin stain, that the transient viscoelastic increase correlated with cellular stress exhibited by the cells during removal with ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'- tetraacetic acid. Prior to cells lifting from their ECM, the attached ECs rearrange their actin microfilaments first into peripheral stress fibers and second into internal aggregates, to maintain cell-cell connectivity, retain their spread morphology, and attempt to adhere more tightly to their underlying ECM. The decrease in DeltaR following its transient rise corresponds to cells finally losing their attachment focal points and lifting from the ECM. We also characterized the normalized f shifts, -Delta(Deltaf)(ECM)/attached cell and -Delta(Deltaf)(cells)/attached cell, as a function of varying the number of adherent cells. Finally, we demonstrate that the underlying native ECM biomaterial, from which all cells have been removed, does not exhibit any significant level of energy dissipation, in contrast to the cells when they are attached to the ECM.  相似文献   

4.
During the initial steps of biofilm formation, bacteria have to adapt to a major change in their environment. The adhesion-induced phenotypic changes in a type 1 fimbriated Escherichia coli strain included reductions in the levels of several outer membrane proteins, one of which was identified as OmpX. Here, the phenotypes of mutant strains that differ at the ompX locus were studied with regard to adhesion, cell surface properties, and resistance to stress and antimicrobial compounds. The kinetics of adhesion were measured online by an extended quartz crystal microbalance technique for wild-type and mutant strains with a fimbriated or nonfimbriated background. Deletion of ompX led to significantly increased cell-surface contact in fimbriated strains but to decreased cell-surface contact in a nonfimbriated strain. Phenotypic characterization of the ompX mutant demonstrated that ompX interferes with proper regulation of cell surface structures that play a key role in mediating firm contact of the cell with a surface (i.e., type 1 fimbriae, flagellae, and exopolysaccharides). These phenotypic changes were accompanied by increased tolerance to several antibiotic compounds and sodium dodecyl sulfate. Based on these results, we propose that changes in the composition of outer membrane proteins during fimbria-mediated adhesion may be part of a coordinated adaptive response to the attached mode of growth.  相似文献   

5.
Phenotypic differences between planktonic bacteria and those attached to abiotic surfaces exist, but the mechanisms involved in the adhesion response of bacteria are not well understood. By the use of two-dimensional (2D) polyacrylamide gel electrophoresis, we have demonstrated that attachment of Escherichia coli to abiotic surfaces leads to alteration in the composition of outer membrane proteins. A major decrease in the abundance of resolved proteins was observed during adhesion of type 1-fimbriated E. coli strains, which was at least partly caused by proteolysis. Moreover, a study of fimbriated and nonfimbriated mutants revealed that these changes were due mainly to type 1 fimbria-mediated surface contact and that only a few changes occurred in the outer membranes of nonfimbriated mutant strains. Protein synthesis and proteolytic degradation were involved to different extents in adhesion of fimbriated and nonfimbriated cells. While protein synthesis appeared to affect adhesion of only the nonfimbriated strain, proteolytic activity mostly seemed to contribute to adhesion of the fimbriated strain. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry, six of the proteins resolved by 2D analysis were identified as BtuB, EF-Tu, OmpA, OmpX, Slp, and TolC. While the first two proteins were unaffected by adhesion, the levels of the last four were moderately to strongly reduced. Based on the present results, it may be suggested that physical interactions between type 1 fimbriae and the surface are part of a surface-sensing mechanism in which protein turnover may contribute to the observed change in composition of outer membrane proteins. This change alters the surface characteristics of the cell envelope and may thus influence adhesion.  相似文献   

6.
The adhesion of cells of Salmonella typhimurium to albite, biotite, felspar, magnetite and quartz was correlated to the presence of fimbriae and degree of hydrophobicity and charge of the bacterial surface. It was found that the presence of fimbriae resulted in a higher degree of adhesion compared to adhesion of nonfimbriated cells. The significance of the physico-chemical characteristics of fimbriae was shown by a direct linearity between high hydrophobicity of fimbriated cells and degree of adhesion to the mineral particles. Fimbriated cells exhibited higher negative as well as positive surface charge as compared to nonfimbriated cells. Adhesion to several of the minerals was shown to be independent of the extent of negative charges on the bacterial surfaces. A high degree of adhesion to biotite, possibly due to a combination of characteristics of the particles, was not related to either bacterial fimbriation or a physico-chemical characteristic of the bacterial surface. The results of the nonspecific adhesion observed are discussed in terms of available binding sites and distribution of physico-chemical characteristics on the bacterial cell surface structures.  相似文献   

7.
The piezoelectric sensor (quartz crystal microbalance, QCM) was used to monitor cell adhesion in real time. Two cell lines, rat epithelial cells (WB F344) and lung melanoma cells (B16F10) were used. The cells were adhered and grown on the gold surface of the sensor pre-coated with adsorbed layer of extracellular matrix proteins as vitronectin and laminin. The process of cell attachment and spreading on the gold surface was continuously monitored and displayed by changes of the resonant frequency Deltaf and resistance DeltaR values of the piezoelectric resonators. The initial phase of cell attachment and spreading induced a decrease of frequency and increase of resistance relating viscoelastic properties of the cell monolayer on the sensing surface. The steady-state of both shifts was achieved after a few hours. The presence and state of cells on the surface was confirmed by fluorescent microscopy. The obtained results demonstrate that the piezoelectric sensor is suitable for studies of the cell adhesion processes. Thus obtained cell-based biosensor has potential for identification and screening of biologically active drugs and other biomolecules affecting cellular shape and attachment.  相似文献   

8.
The quartz crystal microbalance (QCM) was used to monitor endothelial cell (EC) adhesion on the gold surface of an oscillating quartz crystal contained in a QCM device. A number of parameters were investigated. First, we observed differential QCM O-ring toxicities for ECs. Second, appropriate conditions for cell culture and QCM cell environment were identified that can eliminate large-scale frequency oscillations in the measurements. These artifacts are not due to added cells but originate in the time-dependent evaporation of water. Having eliminated these artifacts, we then demonstrated that the measured steady-state crystal frequency shift, Delta f, and motional resistance shift, DeltaR, were determined by the number of firmly attached ECs requiring trypsinization from the crystal surface. Last, following steady-state attachment of ECs, the EC growth stimulation by fibroblast growth factor was monitored in a continuous fashion by measuring f and R values over a 72 h. period. We observed the Delta f values to increase in a way that reflected the increase in EC number bound to the QCM surface. Following addition of ECs to the QCM, the time-dependent increase in DeltaR can be interpreted in terms of increase by the ECs of the energy dissipation properties of the solution at the solution-gold surface interface. This effect is due to their rapid surface attachment and the elaboration of their cytoskeletal properties. These results indicate that the QCM technique can be used for the study of EC attachment and growth and suggest its potential for the real time study of per unit surface area cell mass distribution dynamics and viscoelastic properties and the cells' responses to stresses or perturbations brought about using biologically active molecules.  相似文献   

9.
The processes of adhesion, spreading and proliferation of human mammary cancer cells MCF-7 on two Au electrodes with different surface roughness (R(f) and R(f)=3.2 or 1.1) were monitored and clearly identified with the quartz crystal microbalance (QCM) technique. Analyses of the QCM responses on the resonant frequency shifts (Deltaf(0)) vs. the motional resistance changes (DeltaR(1)) revealed a significant surface-stress effect in the involved courses, in addition to a viscodensity effect and a relatively small mass effect (especially at the smooth electrode). Experiments of fluorescence microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were conducted to investigate the cell population on the electrode vs. the electrode-surface roughness. Simplified equations are deduced to quantitatively evaluate the surface stress, and a novel QCM method for dynamically measuring the surface stress on an electrode in cell-culture course is thus described. It was found that the smoother surface (R(f)=1.1) gave a higher surface stress during cell attachment and less cell population on it than the rougher surface (R(f)=3.2). In addition, real-time QCM monitoring showed on the same electrode the surface stress induced by hepatic normal cells being notably higher than that caused by hepatic cancer cells at cell-attachment stage, suggesting that the surface-stress measurement can exhibit the difference of adhesion-performance between the healthy and ill-behaved cells.  相似文献   

10.
The reduction of bacterial biofilm formation on stainless steel surfaces by N-acetyl-L-cysteine (NAC) is attributed to effects on bacterial growth and polysaccharide production, as well as an increase in the wettability of steel surfaces. In this report, we show that NAC-coated stainless steel and polystyrene surfaces affect both the initial adhesion of Bacillus cereus and Bacillus subtilis and the viscoelastic properties of the interaction between the adhered bacteria and the surface. A quartz crystal microbalance with dissipation was shown to be a powerful and sensitive technique for investigating changes in the applied NAC coating for initial cell surface interactions of bacteria. The kinetics of frequency and dissipation shifts were dependent on the bacteria, the life cycle stage of the bacteria, and the surface. We found that exponentially grown cells gave rise to a positive frequency shift as long as their cell surface hydrophobicity was zero. Furthermore, when the characteristics of binding between the cell and the surface for different growth phases were compared, the rigidity increased from exponentially grown cells to starved cells. There was a trend in which an increase in the viscoelastic properties of the interaction, caused by the NAC coating on stainless steel, resulted in a reduction in irreversibly adhered cells. Interestingly, for B. cereus that adhered to polystyrene, the viscoelastic properties decreased, while there was a reduction in adhered cells, regardless of the life cycle stage. Altogether, NAC coating on surfaces was often effective and could both decrease the initial adhesion and increase the detachment of adhered cells and spores. The most effective reduction was found for B. cereus spores, for which the decrease was caused by a combination of these two parameters.  相似文献   

11.
A biofilm reactor was constructed to monitor the long-term growth and removal of biofilms as monitored by the use of a quartz crystal microbalance (QCM) and a novel optical method. The optical method measures the reflectance of white light off the surface of the quartz crystal microbalance electrode (gold) for determination of the biofilm thickness. Biofilm growth of Pseudomonas aeruginosa (PA) on the surface was used as a model system. Bioreactors were monitored for over 6 days. Expressing the QCM data as the ratio of changes in resistance to changes in frequency (DeltaR/Deltaf) facilitated the comparison of individual biofilm reactor runs. The various stages of biofilm growth and adaptation to low nutrients showed consistent characteristic changes in the DeltaR/Deltaf ratio, a parameter that reflects changes in the viscoelastic properties of the biofilm. The utility of white light reflectance for thickness measurements was shown for those stages of biofilm growth when the solution was not turbid due to high numbers of unattached cells. The thickness of the biofilms after 6 days ranged from 48 mum to 68 mum. Removal of the biofilm by a disinfectant (chlorine) was also measured in real time. The combination of QCM and reflectance allowed us to monitor in real time changes in the viscoelastic properties and thickness of biofilms over long periods of time.  相似文献   

12.
The quartz crystal microbalance (QCM) was used to monitor specific, integrin-mediated adhesion of human ovarian cancer cells to distinct extracellular matrix (ECM) proteins immobilized on gold-coated quartz crystal resonators. The QCM was operated in the impedance analysis mode, where frequency shift as well as bandwidth are accessible on a broad range of overtones. The increase in bandwidth caused by covering the quartz resonator with cells was reproducible and largely independent of overtone order, whereas the frequency shift displayed some variability. Thus the bandwidth proved to be the more robust parameter for sensing cell adhesive events. The bandwidth increased in proportion to the number of seeded cells to the quartz crystal as long as the number was below 150,000 cells/ml. Comparing the resonance parameters on different harmonics, one finds that viscoelastic modeling with homogeneous layer systems cannot reproduce the results: lateral heterogeneity has to be taken into account. The differences in adhesive strength of human ovarian cancer cells towards selected ECM proteins monitored by QCM was in good agreement with data obtained by conventional cell adhesion assays. Strong cell adhesion was observed to the ECM proteins vitronectin (VN) and fibronectin (FN), while only weak attachment occurred on laminin. In order to prove specific, integrin alphavbeta3-mediated cell adhesion to its ligands FN and VN, the cyclic integrin alphavbeta3-directed peptide c(RGDfV) was used as competitor and significantly reversed cell adhesion. Since integrin interaction with ECM proteins is dependent on the presence of bivalent cations, cell detachment was also seen after treatment of cell monolayers with the chelator ethylene-dinitro-tetra-acetic acid (EDTA). The QCM technique is a reliable method to monitor cell adsorption to ECM-pretreated surfaces in real time. It may be an alternative tool for screening specific and selective antagonists of integrin/ECM interaction.  相似文献   

13.
The quartz crystal microbalance (QCM) was used to create piezoelectric whole-cell biosensors utilizing either living endothelial cells (ECs) or the metastatic human mammary cancer cell line MDA-MB-231 adhering to the gold QCM surface under in vitro growth conditions. We utilized the whole-cell QCM biosensors for the detection of the effects of varying concentrations of the microtubule binding drugs taxol and nocodazole by measuring changes in the QCM steady state frequency (Deltaf) and motional resistance (DeltaR), shift values. Using 0.11-50 microM nocodazole, we observed the Deltaf shift values of the biosensors, consisting of 20,000 ECs, to decrease significantly in magnitude (nearly 100%) to a limiting value, in a dose-dependent fashion, over a 5- to 6-h incubation period following drug addition. This effect is consistent with nocodazole's known disruption of intracellular microtubules. On the other hand, 10 microM taxol caused little alteration in Deltaf over the same time period, consistent with its microtubule hyperstabilization effect. When the EC QCM biosensor Deltaf shift values were normalized by the number of ECs found firmly attached to the QCM surface via trypsin removal and electronic counting, the dose curve was shifted to lower nocodazole concentrations, resulting in a more sensitive drug biosensor. The kinetics of the Deltaf decrease with increasing nocodazole concentrations measured by the EC QCM biosensor was found to be similar at all drug concentrations and was well fit by a single first-order exponential decay equation. For all nocodazole doses, t(0.5) was invariant, averaging t(0.5)=0.83+/-0.14 h. These data demonstrate that a single dynamic sensing system within the cell, the microtubules, is disrupted by the addition of nocodazole and this process is sensed by the cell QCM biosensor. This interpretation of the data was confirmed by a fluorescence light microscopy investigation of ECs undergoing treatment with increasing nocodazole doses using a fluorescent antibody to alpha-tubulin. These studies revealed a corresponding loss of the spread morphology of the cells, concomitant with a rearrangement of the extended native microtubules into increasingly large aggregates with the cells eventually lifting from the surface in significant numbers at 50 microM. At 6 microM nocodazole, partial reversibility of the EC QCM biosensor was demonstrated. These results indicate that the EC QCM biosensor can be used to detect and study EC cytoskeleton alterations and dynamics. We suggest the potential of this cellular biosensor for the real-time identification or screening of all classes of biologically active drugs or biological macromolecules that affect cellular attachment and cellular spreading, regardless of their molecular mechanism of action.  相似文献   

14.
Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired adhesion of cells to glass surfaces, but the adhesive properties of S. xylosus were regained within 30 minutes if DNase was not continuously present, implying a continuous release of eDNA in the culture. Removal of eDNA lowered the adhesion of S. xylosus to all surfaces chemistries tested, but not at all ionic strengths. No effect was seen on glass surfaces and carboxyl-functionalised surfaces at high ionic strength, and a reverse effect occurred on amine-functionalised surfaces at low ionic strength. However, eDNA promoted adhesion of cells to hydrophobic surfaces irrespective of the ionic strength. The adhesive properties of eDNA in mediating initial adhesion of S. xylosus is thus highly versatile, but also dependent on the physicochemical properties of the surface and ionic strength of the surrounding medium.  相似文献   

15.
In this study we evaluate the strengths and weaknesses of surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance (QCM) technique for studying DNA assembly and hybridization reactions. Specifically, we apply in parallel an SPR instrument and a 5 MHz QCM device with dissipation monitoring (QCM-D) to monitor the assembly of biotinylated DNA (biotin-DNA) on a streptavidin-modified surface and the subsequent target DNA hybridization. Through the parallel measurements, we demonstrate that SPR is more suitable for quantitative analysis of DNA binding amount, which is essential for interfacial DNA probe density control and for the analysis of its effect on hybridization efficiency and kinetics. Although the QCM is not quantitative to the same extent as SPR (QCM measures the total mass of the bound DNA molecules together with the associated water), the dissipation factor of the QCM provides a qualitative measure of the viscoelastic properties of DNA films and the conformation of the bound DNA molecules. The complexity in mass measurement does not impair QCM's potential for a kinetic evaluation of the hybridization processes. For quantification of target DNA, the biotin-DNA modified SPR and QCM sensors are exposed to target DNA with increasing concentration. The plots of SPR/QCM signals versus target DNA concentration show that water entrapment between DNA strands make the QCM sensitivity for the hybridization assay well comparable with that of the SPR, although the intrinsic mass sensitivity of the 5 MHz QCM is approximately 20 times lower.  相似文献   

16.
The quartz crystal microbalance (QCM) has been widely accepted as a sensitive technique to follow adsorption processes in gas as well as in liquid environments. However, there are only a few reports about the use of this technique to monitor the attachment and spreading of mammalian cells onto a solid support in culture. Using a QCM-setup we investigated the time course of cell attachment and spreading as a function of seeding density for three widespread and frequently used cell lines (MDCK strains I and II and Swiss 3T3-fibroblasts). Results were found to be in good agreement with the geometrical properties of the individual cell types. The shifts of the resonance frequency associated with confluent cell layers on top of the quartz resonators were found to be dependent on the cell species [MDCK-I: (320±20) Hz; MDCK-II: (530±25) Hz; 3T3: (240±15) Hz] reflecting their individual influence on the shear oscillation of the resonator. These findings are discussed with respect to the basic models of materials in contact with an oscillating quartz resonator. We furthermore showed by inhibition-assays using soluble RGD-related peptides, that only specific, integrin mediated cell adhesion is detected using this QCM approach, whereas the sole presence of the cellular body in close vicinity to the resonator surface is barely detectable.  相似文献   

17.
During transformation of a normal cell to a cell capable of forming a cancerous growth, cellular morphology, the cytoskeleton, and focal contacts undergo significant changes. These changes should be capable of being characterized via real-time monitoring of the dynamic cell adhesion process and viscoelastic properties of cells. Here, we describe use of the quartz crystal microbalance (QCM) to distinguish the dynamic cell adhesion signatures of human normal (HMEC) versus malignant (MCF-7) mammary epithelial cells. The significantly reduced QCM responses (changes in frequency [Δf] and motional resistance ΔR) of MCF-7 cells compared with those of HMECs mirror the cancer cells' morphological features as observed via optical microscope. We analyzed the initial 2-h cell adhesion kinetics, suggesting cell-cell cooperativity for HMECs and no or weak cell-cell interactions for MCF-7 cells. We propose that changes of the ΔR/Δf ratio, which we term the cell viscoelastic index (CVI), reflect the establishment of cytoskeleton structure and dynamic viscoelastic properties of living cells. The CVI decreases significantly on initiation of cell to surface interactions as cells establish their cytoskeletal structures. During the cell adhesion process, MCF-7 cells were consistently softer, exhibiting up to a 2.5-fold smaller CVI when compared with HMECs.  相似文献   

18.
In recent years, there has been a rapid growth in the number of scientific reports in which the quartz crystal microbalance (QCM) technique has played a key role in elucidating various aspects of biological materials and their interactions. This article illustrates some key advances in the development of a special variation of this technique called quartz crystal microbalance with dissipation monitoring (QCM-D). The main feature and advantage of QCM-D, compared with the conventional QCM, is that it in addition to measuring changes in resonant frequency (Δf), a simultaneous parameter related to the energy loss or dissipation (ΔD) of the system is also measured. Δf essentially measures changes in the mass attached to the sensor surface, while ΔD measures properties related to the viscoelastic properties of the adlayer. Thus, QCM-D measures two totally independent properties of the adlayer. The focus of this review is an overview of the QCM-D technology and highlights of recent applications. Specifically, recent applications dealing with DNA, proteins, lipids, and cells will be detailed. This is not intended as a comprehensive review of all possible applications of the QCM-D technology, but rather a glimpse into a few highlighted application areas in the biomolecular field that were published in 2007.  相似文献   

19.
The suitability of the quartz crystal microbalance (QCM) technique for monitoring the attachment and spreading of mammalian cells has recently been established. Different cell species were shown to generate an individual response of the QCM when they make contact with the resonator surface. Little is known, however, about the underlying mechanisms that determine the QCM signal for a particular cell type. Here we describe our results for different experimental approaches designed to probe the particular contributions of various subcellular compartments to the overall QCM signal. Using AC impedance analysis in a frequency range that closely embraces the resonators' fundamental frequency, we have explored the signal contribution of the extracellular matrix, the actin cytoskeleton, the medium that overlays the cell layer, as well as the liquid compartment that is known to exist between the basal plasma membrane and the culture substrate. Results indicate that the QCM technique is only sensitive to those parts of the cellular body that are involved in cell substrate adhesion and are therefore close to the resonator surface. Because of its noninvasive nature, sensitivity, and time resolution, the QCM is a powerful means of quantitatively studying various aspects of cell-substrate interactions.  相似文献   

20.
Staphylococcus aureus is known to cause biomaterial-associated infections of implants and devices once it has breached the skin and mucosal barriers. Adhesion is the initial step in the development of a biomaterial-associated infection, and strategies to prevent staphylococcal adhesion and thus biomaterial-associated infections require understanding of the adhesive bond. The aim of this study was to compare the adhesive bond stiffnesses of two S. aureus strains with and without fibronectin-binding proteins (FnBPs) adhering to a fibronectin-coated quartz crystal microbalance (QCM) sensor surface on the basis of a coupled- resonance model. Both fibronectin adsorption and staphylococcal adhesion were accompanied by negative frequency shifts, regardless of the absence or presence of FnBPs on the staphylococcal cell surfaces. This is the opposite of the positive frequency shifts often observed for other bacterial strains adhering to bare sensor surfaces. Most likely, adhering staphylococci sink into and deform the adsorbed protein layer, creating stiff binding with the sensor surface due to an increased bacterium-substratum contact area. S. aureus 8325-4 possesses FnBPs and yields less negative frequency shifts (Δf) that are further away from the zero-crossing frequency than S. aureus DU5883. This suggests that FnBPs on S. aureus 8325-4 create a stiffer bond to the fibronectin coating than has been observed for S. aureus DU5883. Due to a limited window of observation, as defined by the available resonance frequencies in QCM, we could not determine exact stiffness values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号