共查询到20条相似文献,搜索用时 15 毫秒
3.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured. To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant. 相似文献
4.
The consensus sequence of three bacterial ice nucleation proteins was determined by extrapolation from the nucleotide (nt) sequences of three ice nucleation-encoding genes, iceE (presented here), inaW and inaZ. The three proteins possess considerable similarity, so that a preferred amino acid is shown in most positions of the consensus. The corresponding genes show considerable divergence in the third nt positions of synonymous codons, suggesting that the proteins' conserved features have been maintained by selection. Therefore, the consensus sequence is likely to represent the components of primary structure most important to the ice nucleation function. 相似文献
5.
Ice nucleation temperatures of individual leaves were determined by a tube nucleation test. With this assay, a direct quantitative relationship was obtained between the temperatures at which ice nucleation occurred on individual oat ( Avena sativa L.) leaves and the population sizes of ice nucleation active (INA) bacteria present on those leaves. In the absence of INA bacteria, nucleation of supercooled growth-chamber grown oat leaves did not occur until temperatures were below approximately −5°C. Both nucleation temperature and population size of INA bacteria were determined on the same individual, field-grown oat leaves. Leaves with higher ice nucleation temperatures harbored larger populations of INA bacteria than did leaves with lower nucleation temperatures. Log 10 mean populations of INA bacteria per leaf were 5.14 and 3.51 for leaves with nucleation temperatures of −2.5°C and −3.0°C, respectively. Nucleation frequencies (the ratio of ice nuclei to viable cells) of INA bacteria on leaves were lognormally distributed. Strains from two very different collections of Pseudomonas syringae and one of Erwinia herbicola were cultured on nutrient glycerol agar and tested for nucleation frequency at −5°C. Nucleation frequencies of these bacterial strains were also lognormally distributed within each of the three sets. The tube nucleation test was used to determine the frequency with which individual leaves in an oat canopy harbored large populations of INA bacteria throughout the growing season. This test also predicted relative frost hazard to tomato ( Lycopersicon esculentum Mill) plants. 相似文献
6.
Antibodies were raised against the InaW protein, the product of the ice nucleation gene of Pseudomonas fluorescens MS1650, after protein isolation from an Escherichia coli clone. On Western blots (immunoblots), these antibodies recognized InaW protein and InaZ protein (the ice nucleation gene product of Pseudomonas syringae S203), produced by both E. coli clones and the source organisms. The InaZ protein appeared in P. syringae S203 during stationary phase; its appearance was correlated with the appearance of the ice nucleation-active phenotype. In contrast, the InaW protein occurred at relatively constant levels throughout the growth phases of P. fluorescens MS1650; the ice nucleation activity was also constant. Western analyses of membrane preparations of P. syringae PS31 and Erwinia herbicola MS3000 with this antibody revealed proteins which were synthesized with development of the nucleating phenotype. In these species the presence or absence of the nucleating phenotype was controlled by manipulation of culture conditions. In all nucleation-positive cultures examined, cross-reacting low-molecular-weight bands were observed; these bands appeared to be products of proteolytic degradation of ice nucleation proteins. The proteolysis pattern of InaZ protein seen on Western blots showed a periodic pattern of fragment sizes, suggesting a highly repetitive site for protease action. A periodic primary structure is predicted by the DNA sequence of the inaZ gene. 相似文献
9.
An emulsion droplet formation procedure was employed to isolate yeast cells and, in separate experiments, human red blood cells, one from another in individual droplets, and to segregate extraneous materials catalyzing the formation of ice. Emulsification succeeded in isolating the cells and permitted the observation of the supercooling of droplets containing cells whereby each droplet was observed to nucleate ice at a temperature that depended only upon the components of the droplet. The droplet formation procedures were characterized. It was shown that the surface coatings and the carrier fluids used in the preparation of the emulsions did not act as ice nucleators. It was, in this manner, possible to study the nucleation of ice brought about by supercooling and homogeneous nucleation in the volume of the droplet or by the catalysis of nucleation on or in the cells contained in the droplets. It was shown that yeast cells and red blood cells could each be supercooled to about ?40 °C in short-term experiments. The results also revealed that yeast cells did not store for infinite times at temperatures above the observed upper limit of homogeneous nucleation. The yeast cells died at rates that were exponential functions of time at ?20, ?22.5, ?25, ?29 and ?33 °C. The temperature dependence of the death rate did not correspond to a process with a normal Arrhenius activation energy. The temperature dependence did, however, suggest a potentiated heterogeneous catalysis of ice resulting in the death of the yeast cells. 相似文献
10.
We tested the nucleation activity (INA) of 122 strains of plant pathogenic bacteria (12 varieties and 15 subspecies) stored in collection of the University of Göttingen (GSPB). The strains are isolates from diverse host plants and different geographic regions. One-hundred and seven isolates belong to the Pseudomonads, nine to the genus Erwinia and six to the Xanthomonas. The INA was analysed by ?3°, ?5°, ?7° and ?9°C. The observed value of INA cells ranged from non-detectable to a maximum concentration of ice nuclei in a range from ?7.85 at ?5°C to ?2.63 at ?3°C in 1.82 × 10 3 cfu to 3.3 × 10 3 cfu per ml. The data indicated that 71 (58.2%) of the 122 strains had INA cells, and 51 (41.8%) were inactive. The highest amount of strains with INA cells we found in Pseudomonads (69). In comparison only one strain was active at Erwinia and at Xanthomonas, 46 strains were isolated from the genus Phaseolus vulgaris and 6 from the genus Beta vulgaris. The other isolates with ice active cells belonged to the 13 other plant species. The 51 inactive pathovars were isolated from 21 different culture plants. The pathogens under test were isolated in 16 different countries, mainly in Germany and USA. 相似文献
12.
Cells of ice nucleation active bacterial species catalyse ice formation over the temperature range of -2 to -12°C. Current models of ice nucleus structure associate the size of ice nucleation protein aggregates with the temperature at which they catalyse ice formation. To better define the structural features of ice nucleation proteins responsible for the functional heterogeneity of ice nuclei within a genetically homogeneous collection of cells we used in vitro chemical mutagenesis to isolate mutants with reduced ability to nucleate ice at warm assay temperatures but which retain normal or near normal nucleation activity at cold temperatures (WIND, i.e. w arm i ce n ucleus-d eficient mutants). Nearly half of the mutants obtained after hydroxylamine mutagenesis of the iceE gene from Erwinia herbicola had this phenotype. The phenotypes and location of lesions on the genetic map of iceE were determined for a number of mutants. All WIND mutations were restricted to the portion of iceE encoding the repetitive region of the poty peptide. DNA sequencing of two WIND mutants revealed single nucleotide substitutions changing a conserved serine or glycine residue to phenylalanine and serine, respectively. The implications of these findings in structure/function models for the ice nucleation protein are discussed. 相似文献
13.
Summary Pea plants ( Pisum sativum L., var. Lincoln) were grown in nutrient cultures at 4 levels of iron, 0.60 ppm (low), 0.96 ppm (low), 3.0 ppm (normal) and 30 ppm (excess) for 45 days.Leaf extracts were assayed for chlorophyll, proteins, catalase and peroxidase activities. Catalase and chlorophyll were closely related to iron supply. An inverse relationship was observed between peroxidase and catalase activities. Peroxidase was increased both at dificiency and excess iron levels, but was depressed at normal iron supply. The peroxidase/catalase ratio varied with iron supply and showed a minimum value of about 39 at 15 and 30 days growth, at adequate iron supplies.Measurement of catalase activity and the use of peroxidase/catalase ratios appear to be helpful in identifying iron deficiencies in peas. 相似文献
14.
Rapid “low-temperature conditioning” and “solute conditioning” of the ice nucleation active bacterium Erwinia herbicola No. 26 are described. Conditioning is the process by which the ability to initiate ice at high temperatures is gained in these bacteria. The cumulative ice nucleator concentration, N[T], was used to measure the number of ice nucleators present in the bacterial systems. N[T] was determined at temperatures from −2 ° to −10 °C and was measured under varying conditioning temperature, time, and solute regimes. Values of N[T] increased rapidly on cooling samples from 30 to 5 °C. The optimum low temperature for conditioning was 5 °C. The conditioning process followed first-order reaction kinetics and time constants (1/rate constant) were between 43 and 62 min at 5 °C. Individual ice nucleators were isolated in droplets and were stable for at least 2 hr. Low-temperature conditioning did not occur when protein synthesis was inhibited by eliminating amino acids in the low-temperature conditioning media or by using the protein synthesis inhibitors chloramphenicol and streptomycin. Analysis of low-temperature conditioning, using heterogeneous ice nucleation theory predicted that ice nucleators are large and have diameters ranging from 80 Å (active at −8 °C) to 300 Å (active at −3 °C). In conclusion, it was predicted that conditioning resulted from growth of the nucleator from about 80 to 300 Å, from a change in the surface properties of 300 Å nucleator making it more similar to ice, or from a combination of these. 相似文献
16.
Juvenile milkfish Chanos chanos (Forssk?l, 1775) were transferred from a local fish farm to fresh water (FW; 0 per thousand ), brackish water (BW; 10 per thousand, 20 per thousand ) and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. The blood and gill of the fish adapted to various salinities were analyzed to determine the osmoregulatory ability of this euryhaline species. No significant difference was found in plasma osmolality, sodium or chloride concentrations of milkfish adapted to various salinities. In FW, the fish exhibited the highest specific activity of Na, K-ATPase (NKA) in gills, while the SW group was found to have the lowest. Relative abundance of branchial NKA alpha-subunit revealed similar profiles. However, in contrary to other euryhaline teleosts, i.e. tilapia, salmon and eel, the naturally SW-dwelling milkfish expresses higher activity of NKA in BW and FW. Immunocytochemical staining has shown that most Na, K-ATPase immunoreactive (NKIR) cells in fish adapted to BW and SW were localized to the filaments with very few on the lamellae. Moreover, in FW-adapted milkfish, the number of NKIR cells found on the lamellae increased significantly. Such responses as elevated NKIR cell number and NKA activity are thought to improve the osmoregulatory capacity of the milkfish in hyposaline environments. 相似文献
17.
We determined the physiological effects of joint and separate nucleopolyhedrovirus (NPV) infection and parasitism by the endoparasitoid Microplitis pallidipes Szepligeti on biochemical events in the noctuid Spodoptera exigua (Hübner). The results indicated that in parasitized larvae, compared to healthy larvae, total protein concentration in host hemolymph began to decline and total sugar concentration significantly increased by the first day, while lipid content in the host body significantly increased by the second day after parasitization. Meanwhile, in jointly infected and parasitized hosts, compared to parasitized larvae, total protein concentration was consistently higher, total sugar concentration was consistently lower, and lipid content became higher by the second day after treatment. In virus-infected larvae, compared to healthy larvae, total protein concentration sharply declined during the first two days but increased by the third, while total sugar concentration increased on the second and third days after virus infection but decreased at other observation times, and lipid content began to increase by the second day after virus infection. Finally, in larvae that were both parasitized and virus-infected, compared to just virus-infected larvae, total protein concentration increased during the first two days but decreased by the third, total sugar concentration increased only on the first and fourth days, and lipid content decreased significantly on the first day but began to increase by the second day after treatment. These findings led us to conclude that parasitization inhibited protein mobilization but stimulated sugar mobilization in host hemolymph, and promoted lipid mobilization in the host body, while Spodoptera exigua NPV infection stimulated protein mobilization induced by parasitization but inhibited sugar mobilization induced by parasitization. 相似文献
19.
Proteins inducible by dehydration and abscisic acid (ABA), have been identified in a number of species and have been suggested to play a role in desiccation tolerance. Recently, we identified a novel boiling-stable protein (BspA) which accumulated in shoots of aspen ( Populus tremula L.) cultured in vitro, in response to gradual water stress and ABA application (Pelah et al. 1995. Tree Physiol. 15: 673–678.). Accumulation of BspA, and of the water stress-related protein dehydrin dsp- 16 and sucrose synthase from the resurrection plant. Craterostigma plantagineum , was examined in two greenhouse-grown Populus species to investigate the relationship between the presence of the proteins and water stress tolerance. Detached leaves of Populus tomentosa lost more water than Populus popularis , resulting in a significant decrease in leaf water potential. Using electrolyte leakage analysis, it was found that detached leaves of Populus popularis are more tolerant to water stress than those of Populus tomentosa . Using western blots with the corresponding antibodies, we have found in Populus popularis accumulation of BspA and sucrose synthase due to water stress, and the constitutive presence of a dehydrin-like protein. In contrast, a low expression of BspA was found in Populus tomentosa , but not of sucrose synthase and dehydrin-like proteins. Desiccation tolerance in many tissues can be partly attributed to soluble sugars. Analysis of the amount of soluble sugars did not reveal clear-cut differences between the two species, except for significant sucrose accumulation and glucose reduction in water-stressed Populus tomentosa and increase in glucose in water-stressed Populus popularis . The data obtained points to a positive correlation between increased water stress tolerance of one poplar species as compared with another and accumulation of water stress-related proteins and sucrose synthase. 相似文献
20.
The frost sensitivity of Citrus sinensis in relation to the presence of biogenic ice nuclei was studied. In commercially managed citrus groves the ice nucleation active (INA) bacterium Pseudomonas syringae reached 6 × 10 4 colony forming units (CFU) leaf −1, a population sufficiently high to catalyze ice formation. However, a transient loss of bacterial nucleation activity was noticeable at subzero field temperatures, followed by resumption as temperatures rose. This loss was apparently due to a temporary transition of INA to ice nucleation inactive (INI) bacteria. Field application of Bordeaux mixture, copper hydroxide, streptomycin, and 2-hydroxypropylmethanethiolsulfonate (HPMTS), resulted in reduction of INA bacterial populations to detectability (≤ 10 2 CFU leaf −1) limits. However, the corresponding reduction in ice nucleation events in treated samples as compared to controls at nucleation temperature ≥−3°C was not as dramatic. It ranged from approximately 7% in samples treated with the bactericide HPMTS, to 35% in samples treated with chemicals possessing combined bactericidal - fungicidal action (coppers). Since a quantitative relationship exists between ice nucleation events on individual leaves and the INA bacterial populations harbored by these leaves, these results suggest the co-existence of a bacterial and a proteinaceous, yet non-bacterial ice nucleating source in citrus, both active at ≥−3°C. 相似文献
|