首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
E Y Lai  C Walsh  D Wardell  C Fulton 《Cell》1979,17(4):867-878
The programmed de novo synthesis of flagellar tubulin during the hour-long differentiation of Naegleria gruberi from amoebae to flagellates is our paradigm for the study of gene expression during cell differentiation. This paper reports the efficient translation of flagellar tubulin mRNA in the wheat germ cell-free system directed by total or polyadenylated RNA extracted from differentiating cells. The tubulin in the in vitro product has a subunit molecular weight of 55,000, separates into alpha and beta subunits under suitable conditions of polyacrylamide gel electrophoreis and co-polymerizes with calf brain tubulin. At least half of the tubulin synthesized in vitro is precipitated by antibodies specific to flagellar tubulin, and the immunoprecipitated tubulin subunits yield peptide maps similar to those of outer doublet tublin. Flagellar tubulin is the predominant protein synthesized in the cell-free system, and amounts to about 5% of the polypeptides whose synthesis is directed by total RNA from differentiating cells. In contrast, little or no flagellar tubulin is synthesized when the cell-free system is directed by RNA extracted from amoebae prior to differentiation. Translation assays show that at least 92% of the flagellar tubulin mRNA appears during differentiation. The time course of appearance of this mRNA was measured by quantitative immunoprecipitation of the cell-free products. Under conditions where cells from flagella 60 min after initiation of differentiation, translatable flagellar tubulin mRNA was first detected at 20 min, reached a maximum at about 60 min and then declined. An excellent correlation was observed between the amount of translatable flagellar tubulin mRNA and the previously measured rates of flagellar tubulin synthesis in vivo. These results indicate that synthesis of flagellar tubulin is a direct reflection of the abundance of its mRNA, and provide the molecular techniques for dissection of the factors that regulate the rapid appearance of this structural protein during differentiation.  相似文献   

2.
Effect of Canavanine on Murine Retrovirus Polypeptide Formation   总被引:1,自引:1,他引:0       下载免费PDF全文
Canavanine is an arginine analog which is widely used to inhibit proteolytic processing of viral polyproteins. Certain results obtained with canavanine have suggested that it may have other effects. Therefore, we examined the effects of canavanine on the cell-free synthesis of murine retrovirus proteins. It was found that the electrophoretic mobility of the major gag-related cell-free product of both Rauscher murine leukemia virus (R-MuLV) and Moloney murine sarcoma virus 124 (Mo-MuSV-124) RNA was dependent on the concentration of canavanine used during translation. As the canavanine concentration was increased up to 4 mM, the apparent size of the major gag-related polypeptide also increased from 65,000 (R-MuLV RNA) or 63,000 (Mo-MuSV-124 RNA) to approximately 80,000 daltons. Additional increases in the canavanine concentration up to 12 mM did not increase the size of the gag gene product beyond 80,000 daltons. This change in electrophoretic mobility appeared to be due to a substitution of canavanine for arginine residues in the polypeptides, not to a change in their actual size. If amber suppressor tRNA and canavanine were used together during translation of Mo-MuSV-124 RNA and Mo-MuLV RNA, the results were also in agreement with this proposal. Translation experiments done with ovalbumin mRNA and mengovirus 35S RNA indicated that canavanine incorporation caused a shift in the electrophoretic mobility of ovalbumin from 43,000 to 45,000 daltons and caused the appearance of two slightly larger polypeptides in the 155,000- and 115,000- dalton regions of the mengovirus RNA cell-free product.  相似文献   

3.
A new procedure for the synthesis of double stranded cDNA, based upon release of mRNA by "in vitro" translation, was used to clone type IV collagen. Collagen synthesizing polysomes selectively isolated from a mouse parietal yolk sac carcinoma (PYS-2) were used for translation in an heterologous cell-free system. Translation products were collagenase-sensitive and displayed an electrophoretic mobility correspondent to type IV collagen. Translation released mRNA was employed to construct a 100 base pairs long cDNA clone which hybridized to a 7,800 nucleotides long mRNA. Peptides synthesized by "in vitro" translation of hybrid selected mRNA displayed an electrophoretic mobility compatible with that of alpha 1 (IV) collagen, were sensitive to collagenase and were immunoprecipitated by anti-type IV collagen antibody.  相似文献   

4.
Ten species of reovirus mRNAs were synthesized by incubating ATP, CTP, GTP, and UTP with reovirus particles which had been treated with chymotrypsin. The mRNAs obtained promote the synthesis of seven or more proteins in a cell-free system prepared from mouse L fibroblasts and the mobilities of these proteins during electrophoresis through polyacrylamide gels are indistinguishable from those of reo capsid proteins. Three antisera were prepared in rabbits: the first against the large size class of reo virion proteins, the second against the medium, and the third against the small. From the proteins whose synthesis was directed in the cell-free system by reo mRNAs each antiserum precipitates only those which correspond in size to the virion proteins against which the antiserum was prepared. The translation of reo mRNA occurs on large polysomal structures. Translation of peptide chains is initiated in the reo mRNA-directed cell-free system for at least 30 min. The average half-life of the various reo mRNAs during protein synthesis in our system is about 15 min. The optimal ionic conditions for reo mRNA translation are very different from those for encephalomyocarditis virus mRNA translation.  相似文献   

5.
Band 3, a transmembrane protein that provides the anion channel of the erythrocyte plasma membrane, crosses the membrane more than once and has a large amino terminal segment exposes on the cytoplasmic side of the membrane. The biosynthesis of band 3 and the process of its incorporation into membranes were studied in vivo in erythroid spleen cells of anemic mice and in vitro in protein synthesizing cell-free systems programmed with polysomes and messenger RNA (mRNA). In intact cells newly synthesized band 3 is rapidly incorporated into intracellular membranes where it is glycosylated and it is subsequently transferred to the plasma membrane where it becomes sensitive to digestion by exogenous chymotrypsin. The appearance of band 3 in the cell surface is not contingent upon its glycosylation because it proceeds efficiently in cells treated with tunicamycin. The site of synthesis of band 3 in bound polysomes was established directly by in vitro translation experiments with purified polysomes or with mRNA extracted from them. The band-3 polypeptide synthesized in an mRNA- dependent system had the same electrophoretic mobility as that synthesized in cells treated with tunicamycin. When microsomal membranes were present during translation, the in vitro synthesized band-3 polypeptide was cotranslationally glycosylated and inserted into the membranes. This was inferred from the facts that when synthesis was carried out in the presence of membranes the product had a lower electrophoretic mobility and showed partial resistance to protease digestion. Our observations indicate that the primary translation product of band-3 mRNA is not proteolytically processed either co- or posttranslationally. It is, therefore, proposed that the incorporation of band 3 into the endoplasmic reticulum (ER) membrane is initiated by a permanent insertion signal. To account for the cytoplasmic exposure of the amino terminus of the polypeptide we suggest that this signal is located within the interior of the polypeptide. a mechanism that explains the final transmembrane disposition of band 3 in the plasma membrane as resulting from the mode of its incorporation into the ER is presented.  相似文献   

6.
The pattern of proteins synthesized at different stages of differentiation of the slime mold Dictyostelium discoideum was studied by two-dimensional polyacrylamide gel electrophoresis. Of the approximately 400 proteins detected during growth and/or development, synthesis of most continued throughout differentiation. Approximately 100 proteins show changes in their relative rates of synthesis. During the transition from growth to interphase, the major change observed is reduction in the relative rate of synthesis of about 8 proteins. Few further changes are noticeable until the stage of late cell aggregation, when production of about 40 new proteins begins and synthesis of about 10 is reduced considerably. Thereafter, there are few changes in the pattern of protein synthesis. Major changes in the relative rates of synthesis of a number of proteins are found during culmination, but few culmination-specific proteins are observed. In an attempt to understand the molecular basis for these changes, mRNA was isolated from different stages of differentiation and translated in an improved wheat germ cell-free system; the products were resolved on two-dimensional gels. The ratio of total translatable mRNA to total cellular RNA is constant throughout growth and differentiation. Messenger RNAs for many, but not all, developmentally regulated proteins can be identified by translation in cell-free systems. Actin is the major protein synthesized by vegetative cells and by early differentiating cells. The threefold increase in the relative rate of synthesis of actin during the first 2 hr of differentiation and the decrease which occurs thereafter can be accounted for by parallel changes in the amount of translatable actin mRNA. Most of the changes in the pattern of protein synthesis which occur during the late aggregation and culmination stages can also be accounted for by parallel increases or decreases in the amounts of translatable mRNAs encoding these proteins. It is concluded that mRNAs do not appear in a translatable form before synthesis of the homologous protein begins, and that regulation of protein synthesis during development is primarily at the levels of production or destruction of mRNA.  相似文献   

7.
An mRNA-dependent reticulocyte cell-free protein synthesizing system very efficient in the translation of myosin heavy-chain mRNA from a rat myogenic cell line is described. This system exhibits a high degree of fidelity with regard to the spectrum and relative proportion of the different proteins synthesized from a sample of cytoplasmic RNA as compared to the proteins synthesized in vivo by the cells from which the RNA is prepared. The main feature of this system is the use of a K+ and Cl- concentration similar to those of the reticulocyte cytoplasm. Using this system, myosin heavy chain, identified by low-salt precipitation, electrophoretic mobility, and partial peptide analysis, represents 17% of the total protein synthesis when cytoplasmic RNA from well-fused L6E9 cells is used. Furthermore, when RNA preparations from growing myoblasts, that when analyzed in other cell-free translational systems seem not to contain any myosin heavy-chain mRNA, are tested in the system reported here, they are proven to contain high amounts of translatable myosin heavy-chain mRNA.  相似文献   

8.
We designed a new approach for selection of translation enhancer sequences that enables efficient protein synthesis in cell-free systems. The selection is based on a gel shift assay of a messenger RNA (mRNA)–protein fusion product that is synthesized in a cell-free translation system using an mRNA display method. A library of randomized 20-nt-long sequences, with all possible combinations of the four nucleotides, upstream of a coding region was screened by successive rounds of screening in which the translation time of the succeeding round was reduced compared with the previous round. An efficient translation enhancer sequence capable of more rapid initiation of cell-free protein synthesis, with a minimal translation time of 5 min, than a natural longer enhancer sequence (Xenopus β-globin 5′UTR) was selected using rabbit reticulocyte extract as a model cell-free translation system. Furthermore, a successful screening of cap-independent translation enhancer sequence and a significant sequence similarity of the selected candidates validated the efficiency of the combined mRNA display and gel shift assay method for the rapid development of advanced cell-free translation systems.  相似文献   

9.
10.
Using chicken brain mRNAs, alpha and gamma enolase precursors were synthesized in the rabbit reticulocyte cell-free translation system. The product proteins showed molecular weights almost identical to those of the mature subunits. The levels of translatable mRNAs for alpha and gamma subunits were determined by the cell-free translation system and immunoprecipitation with specific antisera, during development of chicken brain. The level of alpha mRNA was high at any developmental stage of the brain. On the other hand, the gamma mRNA level was very low at the early embryonic stage, and increased rapidly during development of the brain. These changes were closely correlated with those of the corresponding enzyme activities, indicating that the levels of enolase activities in developing brain were controlled primarily by the level of the translatable alpha and gamma mRNAs.  相似文献   

11.
The distribution of two proteins in Naegleria gruberi, N-gammaTRP (Naegleria gamma-tubulin-related protein) and N-PRP (Naegleria pericentrin-related protein), was examined during the de novo formation of basal bodies and flagella that occurs during the differentiation of N. gruberi. After the initiation of differentiation, N-gammaTRP and N-PRP began to concentrate at the same site within cells. The percentage of cells with a concentrated region of N-gammaTRP and N-PRP was maximal (68%) at 40 min when the synthesis of tubulin had just started but no assembled microtubules were visible. When concentrated tubulin became visible (60 min), the region of concentrated N-gammaTRP and N-PRP was co-localized with the tubulin spot and then flagella began to elongate from the region of concentrated tubulin. When cells had elongated flagella, the concentrated N-gammaTRP and N-PRP were translocated to the opposite end of the flagellated cells and disappeared. The transient concentration of N-gammaTRP coincided with the transient formation of an F-actin spot at which N-gammaTRP and alpha-tubulin mRNA were co-localized. The concentration of N-gammaTRP and formation of the F-actin spot occurred without the formation of microtubules but were inhibited by cytochalasin D. These observations suggest that the regional concentration of N-gammaTRP and N-PRP is mediated by actin filaments and might provide a site of microtubule nucleation for the assembly of newly synthesized tubulins into basal bodies and flagella.  相似文献   

12.
13.
Poly(A)+RNA from phenol-extracted rat liver polysomes was translated in a heterologous cell-free system derived from wheat germ. The RNA stimulated the incorporation of [35S]methionine into proteins 20- to 30-fold. The labeled translation products were incubated with an antiserum against cytochrome c oxidase. After binding of the antigen x immunoglobulin complex to and elution from protein A-Sepharose and sodium dodecyl sulfate (SDS)-polyacrylamide step gel electrophoresis, autoradiography was carried out. Mainly one major protein with an apparent molecular weight of 19,500 was visualized. When the unlabeled individual cytochrome c oxidase subunits IV, V, VI, or VII, isolated from preparative SDS-polyacrylamide gels, were added to the translation mixture, it was found that only subunit IV could compete with the in vitro-synthesized protein of 19.5 kilodaltons in respect to the binding to the cytochrome c oxidase antiserum. The in vitro-synthesized product was 3,000 daltons larger than the cytochrome c oxidase subunit polypeptide IV. It is concluded that the subunit IV is synthesized as a precursor. Evidence for the precursor form was obtained from translation experiments with [35S]methionine bound to a specific initiator tRNA which led to a radioactively labeled product of identical electrophoretic mobility as the 19.5 kilodalton protein. Furthermore, two dimensional tryptic fingerprints of subunit IV and its precursor show a high degree of similarity.  相似文献   

14.
Three of four mRNAs that are specific to the differentiation of Naegleria gruberi amebae into flagellates (Mar, J., J. H. Lee, D. Shea, and C. J. Walsh, 1986, J. Cell Biol., 102:353-361) have been identified as coding for flagellar proteins. The products of these mRNAs, which are coordinately regulated during the differentiation, were identified by in vitro translation of hybrid-selected RNA followed by two-dimensional gel electrophoresis and antibody binding. Six cross-hybridizing clones complementary to a 1.7-kb RNA (class II) all selected mRNA that was translated into two alpha-tubulins. The principal in vitro product, alpha-1, comigrated with a cytoplasmic alpha-tubulin, while the minor product with a more acidic pI, alpha-2, comigrated with flagellar alpha-tubulin. While Naegleria flagellar alpha-tubulin was found to be acetylated based on its reaction with a monoclonal antibody specific to this form, we suggest that alpha-2 is not likely to arise due to acetylation in vitro but probably represents the product of a second alpha-tubulin gene. The class III clone, also complementary to a 1.7-kb RNA, selected beta-tubulin mRNA. In the course of this work it was found, using monoclonal antibodies to the alpha- and beta-subunits of tubulin, that Naegleria alpha-tubulin migrated faster than beta-tubulin on SDS-PAGE. The class IV clone, which hybridizes with a 0.5-kb RNA, selected an mRNA that was translated into a heat stable calcium-binding protein, flagellar calmodulin.  相似文献   

15.
Insulin modulation of apolipoprotein B gene expression was studied at the translational level by the use of a cell-free translation system from a hepatoma cell-line, HepG2. Extracts of HepG2 cells lysed with lysolecithin were found to have high in vitro protein synthesizing activity utilizing endogenous mRNA. The level of peptide chain initiation was high, as suggested by a significant inhibition of translation by edeine. The translation products of endogenous mRNA in HepG2 cell-free lysate were probed with anti-apolipoprotein B antibodies to investigate its synthesis. A 550 kilodalton (kDa) polypeptide was selected by a polyclonal antibody, as well as a monoclonal antibody, against the C-terminal end of apolipoprotein B molecule. This in vitro synthesized polypeptide was also found to compare well in size with the in vivo product. The HepG2 lysate was also shown to efficiently synthesize in vitro a number of other proteins including albumin, apolipoprotein E, apolipoprotein A1, and actin. The in vitro synthesis of polypeptides as large as 500 kDa was unexpected and has not previously been demonstrated in a cell-free system. The HepG2 translation system was used to investigate the effect of insulin on the in vitro translation of apolipoprotein B. Lysates prepared from HepG2 cells treated with insulin were found to have lower translational activity (by an average of 52.3%) for apolipoprotein B compared with lysates from control untreated cells. In vitro synthesis of actin and apolipoprotein E were unaffected under these conditions. The insulin-stimulated decline in in vitro apolipoprotein B synthesis was not due to a change in apolipoprotein B mRNA levels as determined by slot- and Northern-blot analyses, suggesting that the inhibitory effect of insulin may be exerted partly at the level of apolipoprotein B mRNA translation.  相似文献   

16.
Early events in the biosynthesis of alpha-glucosidase (EC 3.2.1.20) were studied in a wheat-germ cell-free translation system, using control and mutant RNA. In vitro, the primary translation product of the alpha-glucosidase mRNA is a 100 kDa protein. When canine microsomal membranes are added to the translation system, the nascent alpha-glucosidase precursor is cotranslationally transported across the microsomal membranes, yielding a 110 kDa glycosylated form. This protein has the same electrophoretic characteristics as the alpha-glucosidase precursor observed after in vivo labeling of control fibroblasts. Inhibition of glycosylation in vivo by tunicamycin or deglycosylation of the in vivo synthesized alpha-glucosidase precursor by glycopeptidase F reveals a core protein similar in molecular mass to the primary translation product. Total RNA from a patient with the adult form of glycogenosis type II is not able to direct the synthesis of normal amounts of alpha-glucosidase in vitro. Northern blot analysis of the RNA, using cloned alpha-glucosidase cDNA sequences as a probe, demonstrates that in this patient the amount of the 3.4 kb alpha-glucosidase mRNA is highly reduced. The results indicate that the synthesis or stability of the mRNA is affected.  相似文献   

17.
18.
C-reactive protein (CRP) mRNA was assayed by cell-free translation of poly(A)-containing liver RNA isolated both from rabbits stimulated to undergo the acute-phase response and from unstimulated control rabbits. No CRP-related translation products were identified until the denaturant methylmercury hydroxide (CH3HgOH) was added to the RNA before cell-free translation. In the presence of the denaturant, a 24000-Da translation product was synthesized which was immunochemically identifiable as the CRP primary translation product. It is likely that rabbit CRP mRNA can form a stable intramolecular duplex which interferes with its translatability in vitro. The 24000-Da CH3HgOH-facilitated cell-free translation product was not detected in poly(A)-containing liver RNA from unstimulated animals, indicating that the concentration of translatable CRP mRNA was dramatically induced during the acute-phase response. On the basis of absorption experiments, the 24000-Da CRP primary translation product was immunochemically more closely related to denatured CRP than to native CRP.  相似文献   

19.
The subcellular site of biosynthesis of the catecholamine biosynthetic enzymes was examined. Free and membrane-bound polysomes were prepared from bovine adrenal medulla and mRNA was isolated from these polysomes. Both were active in directing cell-free translations. Immunoprecipitation of cell-free products with specific antisera localized the biosynthesis of the subunits of tyrosine hydroxylase (TH) (apparent Mr = 61,000) and of phenylethanolamine N-methyltransferase (PNMT) (apparent Mr = 32,000) on free polysomes, compared with biosynthesis of subunits of dopamine beta-hydroxylase (DBH) (apparent Mr = 67,000) on membrane-bound polysomes. Cross-reactivity between translation products was observed. Antibodies for DBH recognized a polypeptide with electrophoretic mobility identical to newly synthesized PNMT. However increasing concentrations of antibodies to DBH recognized at most 1/20 of the PNMT formed. The results of this study show the subcellular distribution of the catecholamine synthesizing enzymes is determined by their site of biosynthesis.  相似文献   

20.
The distribution of the mRNA coding for the common precursor of corticotropin and beta-lipotropin among different parts of the bovine pituitary has been investigated by quantifying the mRNA activity with the use of a cell-free protein-synthesizing system. The results obtained have demonstrated that this mRNA activity is located both in the anterior lobe and in the intermediate lobe, while it is essentially not detectable in the neural lobe nor in the stalk. The structural identity of the translation products of corticotropin/beta-lipotropin mRNA from the anterior and from the intermediate lobe has been indicated by their molecular weight as well as by the electrophoretic patterns of the peptide fragments formed from them upon partial enzymatic proteolysis or upon cyanogen bromide cleavage. The specific activity of corticotropin/beta-lipotropin mRNA in the intermediate lobe is about 20-fold higher than that in the anterior lobe, and the total activity of this mRNA in the former is about 2-fold higher than that in the latter. In the intermediate lobe, the translation product of corticotropin/beta-lipotropin mRNA amounts to almost one-third of the products encoded by total translatable mRNA. These results indicate that corticotropin/beta-lipotropin mRNA represents a major mRNA species in intermediate lobe of the pituitary, thus suggesting that this lobe may perform a highly specialized function in producing a large amount of the common precursor of corticotropin and beta-lipotropin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号