共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular dichroism studies of an oligo-alpha-thymidylate and of its interactions with complementary sequences.
下载免费PDF全文

An octathymidylate synthesized with the alpha anomer of thymidine has been studied using circular dichroism. Its conformation has been compared to that of its analogue containing the naturally occurring beta anomer. In both compounds some degree of intramolecular stacking is present as indicated by the shapes of the circular dichroism spectra and their variations with temperature. As its beta-analogue the alpha-octathymidylate binds to its complementary sequences containing beta-nucleosides. Only complexes with 1A:1T stoechiometry were observed. Binding to ribose- containing oligomers and polymers is much stronger than binding to deoxyribose-containing analogues. Circular dichroism spectra provided evidence for a difference between the geometry of the various complexes formed with an alpha-oligothymidylate and those formed with its beta-anomer-containing analogue. 相似文献
2.
Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy (T delta S degrees = +10.32 kcal/mol) and no change in enthalpy. Binding to albumin is driven by enthalpy (delta H degrees = -8.34 kcal/mol) and is accompanied by a decrease in entropy (T delta S degrees = -2.88 kcal/mol). Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic (delta H degrees was -3.3 and -5.5 kcal/mol, respectively) and by entropic (T delta S degrees was +4.44 and +2.91 kcal/mol, respectively) components. The implications of these finding are discussed. 相似文献
3.
An oligodeoxynucleotide containing four thymines and covalently attached to an acridine derivative through its 3'-phosphate [(Tp)4(CH2)5Acr] was synthesized. Its conformation in solution was investigated by proton magnetic resonance. Both intramolecular interactions between the acridine dye and thymines and intermolecular interactions were demonstrated. Both proton and phosphorus magnetic resonances were used to study the specific interaction of (Tp)4(CH2)5Acr with poly(rA) and (Ap)3A. The results were compared to those obtained when the acridine-containing substituent was replaced by an ethyl group attached to the 3'-phosphate of the oligothymidylate. The acridine dye strongly stabilized the complexes formed with both poly(rA) and (Ap)3A. Upfield shifts of both adenine and acridine proton resonances were observed in the complexes. These results were ascribed to an intercalation of the acridine ring between A X T base pairs of the duplex structure formed by the oligothymidylate with its complementary oligoadenylate sequence. An analysis of proton and phosphorus chemical shifts as well as measurements of T1 relaxation times at different temperatures allowed us to propose several structures for the complexes formed by (Tp)4(CH2)5Acr with its complementary sequence. 相似文献
4.
A K Al-Ali J D Buchanan D M Power J Butler 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1983,43(4):433-444
Pulse radiolysis has been used to determine the thermodynamic parameters (delta G', delta H' and delta S') governing the binding of adrenalin and norephedrine to heparin. These complexes were completely dissociated by increasing concentrations of inorganic salts. Lower concentrations of divalent cations (e.g. Ca2+) than of monovalent cations (e.g. Na+) were necessary to effect dissociation of the complex. For each interaction an increase in drug binding occurred as the temperature was increased from ambient. However, a transition temperature was observed (48 degrees C) above which the drug was progressively released as the temperature was increased. These observations are discussed in terms of conformational changes induced in the polymer below and above its melting temperature. 相似文献
5.
The thermodynamic contributions to duplex formation of all 32 possible single-nucleotide dangling ends on a Watson-Crick pair are reported. In most instances, dangling ends are stabilizing with free energy contributions ranging from +0.48 (GT(A)) to-0.96 kcal/mol (). In comparison, Watson-Crick nearest-neighbor increments range from -0. 58 (TA/AT) to -2.24 (GC/CG) kcal/mol. Hence, in some cases, a dangling end contributes as much to duplex stability as a Watson-Crick A-T base pair. The implications of these results for DNA probe design are discussed. Analysis of the sequence dependence of dangling-end stabilities show that the nature of the closing base pair largely determines the stabilization. For a given closing base pair, however, adenine dangling ends are always more or equally as stable as the other dangling nucleotides. Moreover, 5' dangling ends are more or equally as stabilizing as their 3' counterparts. Comparison of DNA with RNA dangling-end motifs shows that DNA motifs with 5' dangling ends contribute to stability equally or more than their RNA counterparts. Conversely, RNA 3' dangling ends contribute to stability equally or more than their DNA counterparts. This data set has been incorporated into a DNA secondary structure prediction algorithm (DNA MFOLD) (http://mfold2.wustl.edu/mfold/dna/for m1.cgi) as well as a DNA hybridization prediction algorithm (HYTHERtrade mark) (http://jsl1.chem.wayne.edu/Hyther/hythermenu .html). 相似文献
6.
Binding of laurate and myristate anions to human serum albumin has been studied over a range of temperatures, 5-37 degrees C, at pH 7.4. The binding curves indicate that the strength of binding of the first few molecules of fatty acid to albumin (r less than 5) decreases with increasing temperature, whereas binding of the following molecules seems to proceed independently of temperature. Binding data were analyzed according to the general binding equation yielding several sets of acceptable binding constants within a probability limit of 0.75. From the temperature dependence of the first step constant, it was possible to calculate values for the changes in enthalpy and entropy during the initial binding step. For the medium-chain fatty acids, laurate and myristate, binding of the first molecule to albumin appeared to be enthalpic, with a tendency to an increasing contribution of entropy to binding energy with increasing chain length of the fatty acid. 相似文献
7.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2016,1860(6):1107-1117
BackgroundWhen oligonucleotides hybridize to long target molecules, the process is slowed by the secondary structure in the targets. The phenomenon has been analyzed in several previous studies, but many details remain poorly understood.MethodsI used a spectrofluorometric strategy, focusing on the formation/breaking of individual base pairs, to study the kinetics of association between a DNA hairpin and > 20 complementary oligonucleotides (‘antisenses’).ResultsHybridization rates differed by over three orders of magnitude. Association was toehold-mediated, both for antisenses binding to the target's ends and for those designed to interact with the loop. Binding of these latter, besides being consistently slower, was affected to variable, non-uniform extents by the asymmetric loop structure. Divalent metal ions accelerated hybridization, more pronouncedly when nucleation occurred at the loop. Incorporation of locked nucleic acid (LNA) residues in the antisenses substantially improved the kinetics only when LNAs participated to the earliest hybridization steps. The effects of individual LNAs placed along the antisense indicated that the reaction transition state occurred after invading at least the first base pair of the stem.ConclusionsThe experimental approach helps dissect hybridization reactions involving structured nucleic acids. Toehold-dependent, nucleation–invasion models appear fully appropriate for describing such reactions. Estimating the stability of nucleation complexes formed at internal toeholds is the major hurdle for the quantitative prediction of hybridization rates.General significanceWhile analyzing the mechanisms of a fundamental biochemical process (hybridization), this work also provides suggestions for the improvement of technologies that rely on such process. 相似文献
8.
Plants offer the potential for selective removal and sequestration of toxic heavy metals from contaminated soil. Phytoextraction of metal ions involve their transport through the plant’s root system and into its shoots and leaves. This study investigates the thermodynamics of Eu(III) ion chemical interactions with Datura innoxia plant root materials under solution conditions of pH 4.0 and 5.0. Both changes in enthalpies (?H) and entropies (?S) of metal binding were elucidated from isotherms collected under varied temperature conditions using regularized regression data analysis and conditional affinity spectra. ?H values for binding to root materials at pH 4.0 and 5.0 were each calculated to be +30 kJ/mol. Values of ΔS for these same materials were found to be +170 and +153 J/mol K for solution conditions of pH 4.0 and 5.0, respectively. These results suggest binding to the root material to be entropically driven (?S° > 0 and ΔH > 0) through possible displacement of waters of solvation. 相似文献
9.
Dietmar Pörschke 《Biophysical chemistry》1974,1(5):381-386
The thermodynamics of the hairpin helix-single strand transition of A6C6U6 has been analyzed by a staggering zipper model with consideration of single strand stacking. This analysis yields an enthalpy change of +11 kcal/mole for the formation of a first, isolated base pair. The stability constant of a first (intramolecular) base pair in A6C6U6 is around 2 × 1O?5 at 25°C, whereas a first (intermoleciilar) base pair in an A6 · U6 helix is characterised by a stability constant of about 4 × 10?3M?1 (25°C, extrapolated from An · Vn oligomer measurements). These data indicate a destabilizing effect of the C6 loop.The rate constant of hairpin helix formation is 2 to 3 × 104 sec?1 associated with an activation enthalpy of +2.5 kcal/mote. The rate of helix dissociation of the A6C6U6 hairpin is in the range of 103 to lO5 sec?1 with an activation enthalpy of 21 . A comparison with the kinetic parameters obtained for A · U oligomer helices shows a specific influence of the C6 loop due to the stacking tendency of the cytosine residues. This intluence is preferentially reflected in the relatively low value of the rate constant of helix formation. 相似文献
10.
11.
Zhang YL Yao ZJ Sarmiento M Wu L Burke TR Zhang ZY 《The Journal of biological chemistry》2000,275(44):34205-34212
The binding of several phosphonodifluoromethyl phenylalanine (F(2)Pmp)-containing peptides to protein-tyrosine phosphatase 1B (PTP1B) and its substrate-trapping mutants (C215S and D181A) has been studied using isothermal titration calorimetry. The binding of a high affinity ligand, Ac-Asp-Ala-Asp-Glu-F(2)Pmp-Leu-NH(2), to PTP1B (K(d) = 0.24 microm) is favored by both enthalpic and entropic contributions. Disruption of ionic interactions between the side chain of Arg-47 and the N-terminal acidic residues reduces the binding affinity primarily through the reduction of the TDeltaS term. The role of Arg-47 may be to maximize surface contact between PTP1B and the peptide, which contributes to high affinity binding. The active site Cys-215 --> Ser mutant PTP1B binds ligands with the same affinity as the wild-type enzyme. However, unlike wild-type PTP1B, peptide binding to C215S is predominantly driven by enthalpy change, which likely results from the elimination of the electrostatic repulsion between the thiolate anion and the phosphonate group. The increased enthalpic contribution is offset by reduction in the binding entropy, which may be the result of increased entropy of the unbound protein caused by this mutation. The general acid-deficient mutant D181A binds the peptide 5-fold tighter than the C215S mutant, consistent with the observation that the Asp to Ala mutant is a better substrate-trapping reagent than C215S. The increased binding affinity for D181A as compared with the wild-type PTP1B results primarily from an increase in the DeltaH of binding in the mutant, which may be related to decreased electrostatic repulsion between the phosphate moiety and PTP1B. These results have important implications for the design of high affinity PTP1B inhibitors. 相似文献
12.
Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop 总被引:6,自引:0,他引:6
All 64 possible thermodynamic parameters for a single-bulge loop in the middle of a sequence were derived from optical melting studies. The relative stability of a single bulge depended on both the type of bulged base and its flanking base pairs. The contribution of the single bulge to helix stability ranged from 3.69 kcal/mol for a TAT bulge to -1.05 kcal/mol for an ACC bulge. Thermodynamics for 10 sequences with a GTG bulge were determined to test the applicability of the nearest-neighbor model to a single-bulge loop. Thermodynamic parameters for the GTG bulge and Watson-Crick base pairs predict, DeltaH degrees, DeltaS degrees, and T(M)(50 microM) values with average deviations of 3.0%, 4.3%, 4.7%, and 0.9 degrees C, respectively. The prediction accuracy was within the limits of what can be expected for a nearest-neighbor model. This certified that the thermodynamics for single-bulge loops can be estimated adequately using a nearest-neighbor model. 相似文献
13.
The interaction of adenine nucleotides with glycyl-tRNA synthetase was examined by several experimental approaches. ATP and nonsubstrate ATP analogues render glycyl-tRNA synthetase more resistant to digestion by a number of proteases (thrombin, Arg-C, and chymotrypsin) at concentrations that correlate with their Michaelis constants or inhibition constants, consistent with their exerting an effect by binding at the ATP site. Glycine had little effect alone but potentiated the effect of ATP in increasing the resistance to thrombin digestion, consistent with the formation of an enzyme-bound adenylate. No protection from thrombin digestion was afforded by tRNA(gly). Binding constants were determined by isothermal titration calorimetry at 25 degrees C for ATP (2.5 x 10(5) M(-1)), AMPPNP (3.7 x 10(5) M(-1)), and AMPPCP (2.2 x 10(6) M(-1)). The nucleotides had similar values for DeltaH (-71 kJ mol(-1)), with values for TDeltaS that accounted for the differences in the binding constants. Near-ultraviolet CD spectra of the enzyme-nucleotide complexes indicate that the nucleotides are bound in the anti configuration. A glycyl-adenylate analogue, glycine sulfamoyl adenosine (GSAd), bound with a large value for DeltaH (-187 kJ mol(-1)), which was balanced by a large TDeltaS term to give a binding constant (3.7 x 10(6) M(-1)) only slightly larger than that of AMPPCP. Glycine binding to the enzyme could not be detected calorimetrically, and its presence did not change the thermodynamic parameters for binding of AMPPCP. AMPPNP and AMPPCP were not substrates for glycyl-tRNA synthetase. Analysis of the temperature dependence of ATP binding indicated that the heat capacity change is small, whereas the binding of GSAd is accompanied by a large negative heat capacity change (-2.6 kJ K(-1) mol(-1)). Titrations performed in buffers with different ionization enthalpies indicate that the large value for DeltaH for the adenylate analogue does not arise from a coupled protonation event. Differential scanning calorimetry indicated that glycyl-tRNA synthetase is stabilized by nucleotides. Unfolding of the protein is irreversible, and thermodynamic parameters for unfolding could therefore not be determined. The results are consistent with a significant conformational transition in glycyl-tRNA synthetase coupled to the binding of GSAd. 相似文献
14.
Models of adsorption were considered, which describe the binding of biologically active ligands on DNA templates. The binding is described most comprehensively and in greatest detail by the distribution function, which determines the probability of detecting the preset number of adsorbed ligands on the template. In the case of noncooperative binding, this function corresponds to the Gaussian distribution and is characterized by two quantities: the mean value of the occupation of the template by ligands and the dispersion of occupation. The accuracy of the occupation of the template by ligands is inversely proportional to dispersion. As the length of the template and the number of reaction sites covered by one ligand upon binding increase, the accuracy of the occupation of the template by ligands increases. An important characteristic of binding is the degree of coverage of the template by ligands. This characteristic represents the portion of template reaction sites covered by all ligands adsorbed on the template. If polycations are bound to nucleic acid molecules, the coverage of the template determines the transition of nucleic acids to a compact state. The degree of template coverage for extended ligands depends only slightly on the binding constant in a wide range of concentrations of a free ligand in solution. Different adsorption models are considered from the unified point of view. The classification of cooperative interactions for a wide class of systems is given, from situations when several ligands are bound on nucleic acid templates to a situation when templates change by the action of ligands and begin to interact with each other. 相似文献
15.
16.
G Westin H J Monstein J Zabielski L Philipson U Pettersson 《Nucleic acids research》1981,9(23):6323-6338
Clones containing sequences complementary to the small nuclear RNA U2 were isolated from a human DNA library (1). Three clones, designated U2/4, U2/6 and U2/7 were purified and characterized by restriction enzyme cleavage, hybridization and heteroduplex analysis. Hybridization showed that the three clones each contained one single region which is complementary to U2 RNA. Restriction enzyme cleavage revealed furthermore that the inserted fragments in the three recombinants are different. Heteroduplex analysis identified a 240-380 bp long duplex region in each heteroduplex which includes sequences complementary to U2 RNA. Heteroduplexes between clones U2/4 and U2/7 as well as between U2/4 and U2/6 revealed two additional approximately 200 bp long homologies. The remainder of the inserts were found to lack measurable sequence homology. Two fragments from clone U2/4 were subcloned in the pBR322 vector and the subclones were used to determine the nucleotide sequence of a region in clone U2/4 which is complementary to U2 RNA. A comparison between the established sequence and the sequence for rat U2 RNA (2) reveals several discrepancies. 相似文献
17.
18.
The interaction between Urtica dioica agglutinin (UDA) and N-acetylglucosamine (GlcNAc) and its (1-4)-linked oligomers was studied by fluorescence titration and isothermal titration microcalorimetry. UDA possesses one significant binding site that can be measured calorimetrically. This site is composed of three subsites, each subsite accommodating one GlcNAc residue. The interaction is enthalpically driven, and the binding area of UDA is characterized by a H of interaction for a given oligosaccharide considerably smaller than that of wheat germ agglutinin (WGA), despite the fact that they both belong to a family of proteins composed entirely of hevein domains. Relatively high Cp values of the UDA-carbohydrate interactions and more favorable entropy term compared to WGA suggest that binding of the carbohydrate ligands by UDA has a higher hydrophobic component than that of WGA. 相似文献
19.
M Jeeves P D Evans R A Parslow M Jaseja E I Hyde 《European journal of biochemistry》1999,265(3):919-928
The Escherichia coli Trp repressor binds to promoters of very different sequence and intrinsic activity. Its mode of binding to trp operator DNA has been studied extensively yet remains highly controversial. In order to examine the selectivity of the protein for DNA, we have used electromobility shift assays (EMSAs) to study its binding to synthetic DNA containing the core sequences of each of its five operators and of operator variants. Our results for DNA containing sequences of two of the operators, trpEDCBA and aroH are similar to those of previous studies. Up to three bands of lower mobility than the free DNA are obtained which are assigned to complexes of stoichiometry 1 : 1, 2 : 1 and 3 : 1 Trp repressor dimer to DNA. The mtr and aroL operators have not been studied previously in vitro. For DNA containing these sequences, we observe predominantly one retarded band in EMSA with mobility corresponding to 2 : 1 complexes. We have also obtained retardation of DNA containing the trpR operator sequence, which has only been previously obtained with super-repressor Trp mutants. This gives bands with mobilities corresponding to 1 : 1 and 2 : 1 complexes. In contrast, DNA containing containing a symmetrized trpR operator sequence, trpRs, gives a single retarded band with mobility corresponding solely to a 1 : 1 protein dimer-DNA complex. Using trpR operator variants, we show that a change in a single base pair in the core 20 base pairs can alter the number of retarded DNA bands in EMSA and the length of the DNase I footprint observed. This shows that the binding of the second dimer is sequence selective. We propose that the broad selectivity of Trp repressor coupled to tandem 2 : 1 binding, which we have observed with all five operator sequences, enables the Trp repressor to bind to a limited number of sites with diverse sequences. This allows it to co-ordinately control promoters of different intrinsic strength. This mechanism may be of importance in a number of promoters that bind multiple effector molecules. 相似文献
20.
Matja? Bon?ina ?rtomir Podlipnik Ivo Piantanida Julita Eilmes Marie-Paule Teulade-Fichou Gorazd Vesnaver Jurij Lah 《Nucleic acids research》2015,43(21):10376-10386
Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ <KdsDNA) and for highly selective quadruplex-specific ligands (Phen-DC3, 360A-Br; KTel22 > KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. 相似文献