首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal modes of vibration of DNA in the low-frequency region (10-300 cm-1 interval) have been identified from Raman spectra of crystals of B-DNA [d(CGCAAATTTGCG)], A-DNA [r(GCG)d(CGC) and d(CCCCGGGG)], and Z-DNA [d(CGCGCG) and d(CGCGTG)]. The lowest vibrational frequencies detected in the canonical DNA structures--at 18 +/- 2 cm-1 in the B-DNA crystal, near 24 +/- 2 cm-1 in A-DNA crystals, and near 30 +/- 2 cm-1 in Z-DNA crystals--are shown to correlate well with the degree of DNA hydration in the crystal structures, as well as with the level of hydration in calf thymus DNA fibers. These findings support the assignment [H. Urabe et al. (1985) J. Chem. Phys. 82, 531-535; C. Demarco et al. (1985) Biopolymers 24, 2035-2040] of the lowest frequency Raman band of each DNA to a helix mode, which is dependent primarily upon the degree of helix hydration, rather than upon the intrahelical conformation. The present results show also that B-, A-, C-, and Z-DNA structures can be distinguished from one another on the basis of their characteristic Raman intensity profiles in the region of 40-140 cm-1, even though all structures display two rather similar and complex bands centered within the intervals of 66-72 and 90-120 cm-1. The similarity of Raman frequencies for B-, A-, C-, and Z-DNA suggests that these modes originate from concerted motions of the bases (librations), which are not strongly dependent upon helix backbone geometry or handedness. Correlation of the Raman frequencies and intensities with the DNA base compositions suggests that the complex band near 90-120 cm-1 in all double-helix structures is due to in-plane librational motions of the bases, which involve stretching of the purine-pyrimidine hydrogen bonds. This would explain the centering of the band at higher frequencies in structures containing G.C pairs (greater than 100 cm-1) than in structures containing A.T pairs (less than 100 cm-1), consistent with the strengths of G.C and A.T hydrogen bonding.  相似文献   

2.
We have obtained low frequency (less than 200 cm-1) Raman spectra of calf-thymus DNA and poly(rI).poly(rC) as a function of water content and counterion species and of d(GGTATACC)2 and d(CGCGAATTCGCG)2 crystals. We have found that the Raman scattering from water in the first and second hydration shells does not contribute directly to the Raman spectra of DNA. We have determined the number of strong Raman active modes by comparing spectra for different sample orientations and polarizations and by obtaining fits to the spectra. We have found at least five Raman active modes in the spectra of A- and B-DNA. The frequencies of the modes above 40 cm-1 do not vary with counterion species, and there are only relatively small changes upon hydration. These modes are, therefore, almost completely internal. The mode near 34 cm-1 in A-DNA is mostly internal, whereas the mode near 25 cm-1 is dominated by interhelical interactions. The observed intensity changes upon dehydration were found to be due to the decrease in interhelical distance. Polymer length appears to play a role in the lowest frequency modes.  相似文献   

3.
The substitution of iron for cobalt in the monomeric insect hemoglobin CTT (Chironomus thummi thummi) III does not alter the Bohr effect for O2-binding. The cobalt substitution in this hemoglobin allows us to identify not only the O-O and Co-O2 stretching mode but also the Co-O-O bending mode by resonance Raman spectroscopy. The assignments were made via 16O2/18O2 isotope exchange. The modes associated with the Co-O-O moiety are pH-dependent. These pH-induced changes of the resonance Raman spectra are correlated with the t = r conformation transition. At high pH (high-affinity state) two unperturbed O-O stretching modes are observed at 1,068 cm-1 (major component) and 1,093 cm-1 (minor component) for the 18O2 complex. These frequencies correspond to split modes at 1,107 cm-1 and 1,136 cm-1 and an unperturbed mode at approximately 1,153 cm-1 for the 16O2 complex. At low pH (low-affinity state) the minor component becomes the major component and vice versa. The Co-O2 stretching frequency varies for approximately 520 cm-1 (pH 5.5) to 537 cm-1 (pH 9.5) indicating a stronger (hence shorter) Co-O2 bond in the high-affinity state. On the other hand, the O-O bond is weakened upon the conversion of the low- to the high-affinity state. The Co-O-O bending mode changes from 390 cm-1 (pH 9.5) to 374 cm-1 (pH 5.5). In the deoxy form the resonance Raman spectra are essentially pH-insensitive except for a vinyl mode at 414 cm-1 (pH 5.5), which is shifted to 416 cm-1 (pH 5.5).  相似文献   

4.
The secondary structural changes of the membrane protein, bacteriorhodopsin, are studied during the premelting reversible transition by using laser-induced temperature jump technique and nanosecond time-resolved Fourier transform infrared spectroscopy. The helical structural changes are triggered by using a 15 degrees C temperature jump induced from a preheated bacteriorhodopsin in D2O solution at a temperature of 72 degrees C. The structural transition from alphaII- to alphaI-helices is observed by following the change in the frequency of the amide I band from 1667 to 1651 cm-1 and the shift in the frequency of the amide II vibration from 1542 cm-1 to 1436 cm-1 upon H/D exchange. It is found that although the amide I band changes its frequency on a time scale of <100 ns, the H/D exchange shifts the frequency of the amide II band and causes a complex changes in the 1651-1600 cm-1 and 1530-1430 cm-1 frequency region on a longer time scale (>300 ns). Our result suggests that in this "premelting transition" temperature region of bacteriorhodopsin, an intrahelical conformation conversion of the alphaII to alphaI leads to the exposure of the hydrophobic region of the protein to the aqueous medium.  相似文献   

5.
T Nishikawa  N Go 《Proteins》1987,2(4):308-329
The normal mode analysis of conformational fluctuation is carried out for a small globular protein, bovine pancreatic trypsin inhibitor. Results are analyzed mainly to reveal the mechanical construction of the protein molecule. We take dihedral angles, including peptide omega angles, as independent variables for the normal mode analysis. There are 306 such angles in this molecule. Motions in modes with frequencies lower than 120 cm-1 are shown to involve atoms in the whole protein molecule, and spatial change of displacement vectors is continuous, i.e., those of atoms near in space are similar. To quantitate the observation of the continuity, a correlation function of direction vectors of atomic displacements is calculated. From this function we define a quantity that is interpreted as the wave length of an equivalent elastic plane wave. From this quantity we deduce effective Young's modulus for each mode. For the mode with the lowest frequency 4.4 cm-1, it turned out to be 0.8 x 10(9) dyn cm-2, the value two orders of magnitude softer than, for instance, alpha-helices. Prompted by this observation, the four lowest frequency modes and also the harmonic motions in the thermal equilibrium are analyzed further mainly to detect relatively rigid structural elements in the molecule. From this analysis emerges a mechanical picture of the protein molecule that is made up of relatively rigid elements held together by very soft parts.  相似文献   

6.
S H Lin  N T Yu  K Gersonde 《FEBS letters》1988,229(2):367-371
Resonance Raman spectroscopy has been employed to determine the vibrational modes of monomeric nitrosyl manganese Chironomus thummi thummi hemoglobin (CTT IV). This insect hemoglobin has no distal histidine. By applying various isotope-labeled nitric oxides (14N16O, 15N16O, 14N18O), we have identified the Mn11-NO stretching model at 628 cm-1, the Mn11-N-O bending mode at 574 cm-1 and the N-O stretching mode at 1735 cm-1. The results suggest a strong Mn11-NO bond and a weak N-O bond. The vinyl group substitution does not influence the nu (Mn11-NO), delta (Mn11-N-O) and nu (N-O) vibrations. The Mn11-NO stretching frequency is insensitive to distal histidine interactions with NO, whereas the N-O stretching frequency is sensitive. Nitric oxide also binds to Met manganese CTT IV to form an Mn111. NO complex which undergoes a slow but complete autoreduction resulting in the Mn11.NO species. In manganese meso-IX CTT IV, the Mn111. NO Mn11. NO conversion alters the intensities of the porphyrin ring modes at 342, 360, 1587 and 1598 cm-1, but shifts the frequencies at 1504 and 1633 cm-1 (in Mn111.NO) to 1497 and 1630 cm-1 (in Mn11. NO), respectively. The unshifted marker line at 1378 cm-1 reflects the fact that the pi electron densities of the porphyrin ring are the same in the two complexes.  相似文献   

7.
Raman spectra of poly(dG-dC) . poly(dG-dC) in D2O solutions of high (4.0M NaCl) and low-salt (0.1M NaCl) exhibit differences due to different nucleotide conformations and secondary structures of Z and B-DNA. Characteristic carbonyl modes in the 1600-1700 cm-1 region also reflect differences in base pair hydrogen bonding of the respective GC complexes. Comparison with A-DNA confirms the uniqueness of C = O stretching frequencies in each of the three DNA secondary structures. Most useful for qualitative identification of B, Z and A-DNA structures are the intense Raman lines of the phosphodiester backbone in the 750-850 cm-1 region. A conformation-sensitive guanine mode, which yields Raman lines near 682, 668, or 625 cm-1 in B (C2'-endo, anti), A (C3'-endo, anti) or Z (C3'-endo, syn) structures, respectively, is the most useful for quantitative analysis. In D2O, the guanine line of Z-DNA is shifted to 615 cm-1, permitting its detection even in the presence of proteins.  相似文献   

8.
J S Vincent  I W Levin 《Biochemistry》1988,27(9):3438-3446
The vibrational Raman spectra of both pure L-alpha-dipalmitoylphosphatidylcholine (DPPC) liposomes and DPPC multilayers reconstituted with ferricytochrome c under varying conditions of pH and ionic strength are reported as a function of temperature. Total integrated band intensities and relative peak height intensity ratios, two spectral scattering parameters used to determine bilayer disorder, are invariant to changes in pH and ionic strength but exhibit a sensitivity to the bilayer concentration of the ferricytochrome c. Protein concentrations were estimated by comparing the 1636 cm-1 resonance Raman line of known ferricytochrome c solutions to intensity values for the reconstituted multilayer samples. Temperature-dependent profiles of the 3100-2800 cm-1 C-H stretching, 1150-1000 cm-1 C-C stretching, 1440 cm-1 CH2 deformation, and 1295 cm-1 CH2 twisting mode regions characteristic of acyl chain vibrations reflect bilayer perturbations due to the weak interactions of ferricytochrome c. The DPPC multilamellar gel to liquid-crystalline phase transition temperature, TM, defined by either the C-H stretching mode I2935/I2880 or the C-C stretching mode I1061/I1090 peak height intensity ratios, is decreased by approximately 4 degrees C for the approximately 10(-4) M ferricytochrome c reconstituted DPPC liposomes. Other spectral features, such as the increase in the 2935 cm-1 C-H stretching mode region and the enhancement of higher frequency CH2 twisting modes, which arise in bilayers containing approximately 10(-4) M protein, are interpreted in terms of protein penetration into the hydrophobic region of the bilayer.  相似文献   

9.
Resonance Raman analysis of the Pr and Pfr forms of phytochrome   总被引:4,自引:0,他引:4  
S P Fodor  J C Lagarias  R A Mathies 《Biochemistry》1990,29(50):11141-11146
Resonance Raman vibrational spectra of the Pr and Pfr forms of oat phytochrome have been obtained at room temperature. When Pr is converted to Pfr, new bands appear in the C = C and C = N stretching region at 1622, 1599, and 1552 cm-1, indicating that a major structural change of the chromophore has occurred. The Pr to Pfr conversion results in an 11 cm-1 lowering of the N-H rocking band from 1323 to 1312 cm-1. Normal mode calculations correlate this frequency drop with a Z----E isomerization about the C15 = C16 bond. A line at 803 cm-1 in Pr is replaced by an unusually intense mode at 814 cm-1 in Pfr. Calculations on model tetrapyrrole chromophores suggest that these low-wavenumber modes are hydrogen out-of-plane (HOOP) wagging vibrations of the bridging C15 methine hydrogen and that both the intensity and frequency of the C15 HOOP mode are sensitive to the geometry around the C14-C15 and C15 = C16 bonds. The large intensity of the 814-cm-1 mode in Pfr indicates that the chromophore is highly distorted from planarity around the C15 methine bridge. If the Pr----Pfr conversion does involve a C15 = C16 Z----E isomerization, then the intensity of the C15 HOOP mode in Pfr argues that the chromophore has an E,anti conformation. On the basis of a comparison with the vibrational calculations, the low frequency (803 cm-1) and the reduced intensity of the C15 HOOP mode in Pr suggest that the chromophore in Pr adopts the C15-Z,syn conformation.  相似文献   

10.
Resonance Raman enhancement of derivatives and intermediates of horseradish peroxidase in the near ultraviolet (N-band excitation) results in intensity and enhancement patterns that are different from those normally observed within the porphyrin Soret (B-band) and alpha-beta (Q-band) absorptions. In particular it allows the resolution of resonance Raman spectra of horseradish peroxidase compound I. The bands above 1300 cm-1 can be assigned to porphyrin vibrational modes that are characteristically shifted in frequency due to removal of an electron from the porphyrin ring. The resonance Raman frequency shifts follow normal mode compositions. Relative to resonance Raman spectra of compound II, the v4 frequency (primarily Ca-N) exhibits a 20 cm-1 downshift. The v2, v11, and v37 vibrational frequencies whose mode compositions are primarily porphyrin Cb-Cb, exhibit 10-20 cm-1 upshifts. The v3, v10, and v28 frequencies, whose mode compositions are primarily Ca-Cm, exhibit downshifts. The downshifts for v3 and v10 are small, 3-5 cm-1; however, the downshift for v28 is 14 cm-1. These frequency shifts are consistent with those of previously published resonance Raman studies of model compounds. In contrast to reports from other laboratories, the data presented here for horseradish peroxidase compound I can be attributed unambiguously to resonance Raman scattering from a porphyrin pi-cation radical.  相似文献   

11.
J F Madden  S H Han  L M Siegel  T G Spiro 《Biochemistry》1989,28(13):5471-5477
Resonance Raman (RR) spectra from the hemoprotein subunit of Escherichia coli sulfite reductase (SiR-HP) are examined in the low-frequency (200-500 cm-1) region where Fe-S stretching modes are expected. In spectra obtained with excitation in the siroheme Soret or Q bands, this region is dominated by siroheme modes. Modes assignable to the Fe4S4 cluster are selectively enhanced, however, with excitation at 488.0 or 457.9 nm. The assignments are confirmed by observation of the expected frequency shifts in SiR-HP extracted from E. coli grown on 34S-labeled sulfate. The mode frequencies and isotopic shifts resemble those seen in RR spectra of other Fe4S4 proteins and analogues, but the breathing mode of the cluster at 342 cm-1 is higher than that observed in the other species. Spectra of various ligand complexes of SiR-HP reveal only slight sensitivity of the cluster terminal ligand modes to the presence of exogenous heme ligands, at variance with a model of ligand binding in a bridged mode between heme and cluster. Close examination of RR spectra obtained with siroheme Soret-band excitation reveals additional 34S-sensitive features at 352 and 393 cm-1. These may be attributed to a bridging thiolate ligand.  相似文献   

12.
Cryogenic stabilization of myoglobin photoproducts   总被引:4,自引:0,他引:4  
The low frequency resonance Raman spectra of photodissociated carbon monoxymyoglobin at cryogenic temperatures (4-77 K) differ from those of deoxymyoglobin. Intensity differences occur in several low frequency porphyrin modes, and intensity and frequency differences occur in the iron-histidine stretching mode. This mode appears at about 225 cm-1 in deoxymyoglobin. At the lowest temperature studied, approximately 4 K, the frequency of the iron-histidine stretching mode in the photoproduct is approximately 233 cm-1, and the intensity is very low. When the temperature of the photoproduct is increased, the intensity of the mode increases, but its frequency is unchanged. The differences between the photoproduct and the deoxy preparation persist to 77 K, the highest temperature studied, and are independent of whether samples are frozen in phosphate buffer or a 50:50 ethylene glycol/phosphate buffer mixture. It is proposed that the frequency of the iron-histidine stretching mode is governed by the tilt angle of the histidine with respect to the normal to the heme plane, and the intensity of the mode is governed by the overlap between the sigma orbital of the iron-histidine bond and the pi orbital of the porphyrin macrocycle. This model can account for differences between the resonance Raman spectra of the photoproduct and the deoxy preparations of both hemoglobin and myoglobin. Furthermore, by considering the F-helix motions in going from 6-coordinate to 5-coordinate hemoglobin and myoglobin, the heme relaxation of these proteins at room temperature with 10-ns pulses can be explained. Based on the findings reported here, low temperature relaxation pathways for both hemoglobin and myoglobin are proposed.  相似文献   

13.
We report the first resonance Raman scattering studies of NO-bound cytochrome c oxidase. Resonance Raman scattering and optical absorption spectra have been obtained on the fully reduced enzyme (a2+, a2+(3) NO) and the mixed valence enzyme (a3+, a2+(3) NO). Clear vibrational frequency shifts are detected in the lines associated with cytochrome a in comparing the two redox states. With 441.6 nm excitation the fully reduced preparation yields a spectrum similar to that of carbon monoxide-bound cytochrome c oxidase and is dominated by the spectrum of reduced cytochrome a. In contrast, in the mixed valence preparation no contributions from reduced cytochrome a are evident in the spectrum, verifying that this heme is no longer in the Fe2+ state. In the mixed valence NO-bound samples, a line appears at approximately 545 cm-1, a frequency similar to that found in NO-bound hemoglobin and myoglobin and assigned as an Fe-N-O-bending mode in those proteins. We do not detect this line in the spectrum of the fully reduced NO-bound enzyme. The carbonyl line of the cytochrome a3 heme formyl group in the fully reduced NO-bound enzyme appears at approximately equal to 1666 cm-1 in the resonance Raman spectrum. In the mixed valence NO-bound preparation the frequency of the carbonyl line increases by 1.2 cm-1 to approximately equal to 1667 cm-1. Thus, modes in cytochrome a2+(3) NO are sensitive to the redox state of the cytochrome a and/or CuA centers. We propose that the redox sensitivity of the formyl mode and the Fe-N-O mode results from an interaction between cytochrome a2+(3) (NO) and the cytochrome a-CuA pair, and is linked to the cytochrome a3 (NO) by the coupling between CuB and the NO-bound cytochrome a3 heme.  相似文献   

14.
Infrared (IR) vibrational circular dichroism (VCD), absorption, and linear dichroism (LD) spectra of four homopolyribonucleotides, poly(rA), poly(rG), poly(rC), and poly(rU), have been calculated, in the 1750-1550 cm-1 spectral region, using the DeVoe polarizability theory. A newly derived algorithm, which approximates the Hilbert transform of imaginaries to reals, was used in the calculations to obtain real parts of oscillator polarizabilities associated with each normal mode. The calculated spectra of the polynucleotides were compared with previously measured solution spectra. The good agreement between calculated and measured polynucleotide spectra indicates, for the first time, that the DeVoe theory is a useful means of calculating the VCD and IR absorption spectra of polynucleotides. For the first time, calculated DeVoe theory VCD and IR absorption spectra of oriented polynucleotides are presented. The calculated VCD spectra for the oriented polynucleotides are used to predict the spectra for such measurements made in the future. The calculated IR spectra for the oriented polynucleotides are useful in interpreting the linear dichroism of the polynucleotides.  相似文献   

15.
The haem-rotational disorder (insertion of haem into globin rotated about the alpha, gamma-meso axis by 180 degrees) has been investigated in the cyano-Met form of the monomeric allosteric insect haemoglobins, CTT III and CTT IV, by resonance Raman spectroscopy. The effect of haem disorder on the resonance Raman spectra has been observed in proto-IX, deutero-IX, and meso-IX CTTs. Most importantly, in the absence of overlapping vinyl vibrations, we have identified two Fe-C-N bending vibrations at 401 cm-1 and 422 cm-1 (pH 9.5) for 57Fe deutero-IX CTT IV ligated with 13C15N-, which are attributed to the two haem-rotational components. One Fe-C-N bending mode at 422 cm-1 shows a pH-induced shift to 424 cm-1 (pH 5.5) indicating the t----r conformational transition, whereas the other bending mode is pH-insensitive, representing a non-allosteric component. By replacing the unsymmetrical porphyrins with the "symmetrical" protoporphyrin-III we eliminate the haem disorder. Then, sharpening of the Fe-N epsilon(His) (at 313 cm-1) and Fe-CN (at 453 cm-1) stretching modes is observed and a single Fe-C-N bending mode (at 412 cm-1) appears. In cyano-Met proto-IX CTT III two vinyl bending vibrations at 412 cm-1 and 591 cm-1 assigned by deuteration of the vinyl groups also reflect the haem disorder. The 412 cm-1 vinyl vibration is intensity-enhanced via through-space coupling with one of the Fe-C-N bending modes (at 412 cm-1). In the cyano-Met form of proto-III CTT III this vinyl vibration is shifted to 430 cm-1 resulting in a dramatic drop in intensity. It is most likely that the specific vinyl-protein interaction at position 4 in one of the haem-rotational components is the origin of the coupling between the Fe-C-N and vinyl bending modes. The Fe-N epsilon(proximal His) and the Fe-CN stretching vibrations as well as the Fe-C-N bending vibration have been identified by 54Fe/57Fe and 13C15N/12C15N/13C14N/12C14N isotope exchange.  相似文献   

16.
A Green's function approach is used in constructing a dynamic model of a semi-infinite length of the DNA homopolymer B poly(d) . poly(d). Considerable attention is focused on the hydrogen bond stretching close to the terminus. A melting (or breathing) coordinate (M) is defined as an average over the three linking hydrogen bond stretches in a unit cell. The thermal mean squared amplitude of (M) is enhanced at the chain end compared with the interior. Spectral branches at 69, 80 and 105 cm-1, as well as a local mode at 75 cm-1, are primary contributors to the enhancement. We suggest that this fact can affect the thermal melting of a DNA double helical homopolymer, enhancing the tendency to start from an end (if one is available). We show how certain infinite chain modes with small (M) amplitude can turn into breathing modes near the terminus, and suggest that the same phenomenon may occur near other specific base-pair sequences. There is also considerable attention paid to the low microwave region from approximately 0 to 1.75 cm-1. The thermally activated modes in this frequency region contribute approximately (0.02 A)2 to [M2(0)] at 40 K, approximately two orders of magnitude greater than for [M2(infinity)]. Most important however, is the existence of narrow resonant modes in this frequency region. Particularly pronounced resonances near 0.03 cm-1 and 0.08 cm-1 (approximately 0.9 and 2.4 GHz) amplify M2(0) at the terminus by about for orders of magnitude over the infinite chain value M2(infinity).  相似文献   

17.
S H Han  J F Madden  L M Siegel  T G Spiro 《Biochemistry》1989,28(13):5477-5485
The vibrations of the bound diatomic heme ligands CO, CN-, and NO are investigated by resonance Raman spectroscopy in various redox states of Escherichia coli sulfite reductase hemoprotein, and assignments are generated by use of isotopically labeled ligands. For the fully reduced CO complex (ferrous siroheme, reduced Fe4S4 cluster) at room temperature, nu CO is observed at 1904 cm-1, shifting to 1920 cm-1 upon oxidation of the cluster. The corresponding delta FeCO modes are identified at 574 and 566 cm-1, respectively, by virtue of the zigzag pattern of their isotopic shifts. In frozen solution, two species are observed for the cluster-oxidized state, with nu CO at 1910 and 1936 cm-1 and nu FeC at 532 and 504 cm-1, respectively; nu FeC for the fully reduced species is identified at 526 cm-1 in the frozen state. For the ferrous siroheme-NO complex (cluster oxidized), nu NO is identified at 1555 cm-1 in frozen solution and a low-frequency mode is identified at 558 cm-1; this stretching mode is significantly lower than that observed in Mb-NO. For the ferric siroheme cyanide complexes evidence of two ligand-bonding forms is observed, with modes at 451/390 and 451/352 cm-1; they are distinguished by a reversal of the isotopic shift patterns of the upper and lower modes and could arise from a linear and a bent Fe-C unit, respectively. For the ferrous siroheme cyanide complex isotope-sensitive modes observed at 495 and 452 cm-1 are assigned to the FeCN- bending and FeC stretching vibrations, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The low-frequency FeCN vibrations of cyanoferric myeloperoxidase (MPO) and horseradish peroxidase (HRP) have been measured by resonance Raman spectroscopy. The ordering of the frequencies of the predominantly FeC stretching and FeCN bending normal vibrational modes in the two peroxidases differs. These normal mode vibrations are identified by their wavenumber shifts upon isotopic substitution of the cyanide ligand. For MPO, the stretching mode nu 1 (361 cm-1) occurs at a lower frequency than the bending mode delta 2 (454 cm-1). For HRP, the order is reversed as nu 1 (456 cm-1) is at a higher frequency than delta 2 (404 cm-1). Normal coordinate analyses and model complexes have been used to address the origin of this behavior. The nu 1 stretching frequencies in cyanide complexes of iron porphyrin and iron chlorin model compounds are similar to one another and to that of HRP. Thus, the inverted order and altered frequencies of the nu 1 and delta 2 vibrations in MPO, relative to those in HRP and the model compounds, are not inherent to the proposed iron chlorin prosthetic group in MPO but, rather, are attributed to distinct distal environmental effects in the MPO active site. The normal coordinate analyses for MPO and HRP showed that the nu 1 and delta 2 vibrational frequencies are not pure; the potential energy distributions for these modes respond not only to the geometry but also to the force constants of the nu(FeC) and delta(FeCN) internal coordinates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
13C- and 2H-labeled retinal derivatives have been used to assign normal modes in the 1100-1300-cm-1 fingerprint region of the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin. On the basis of the 13C shifts, C8-C9 stretching character is assigned at 1217 cm-1 in rhodopsin, at 1206 cm-1 in isorhodopsin, and at 1214 cm-1 in bathorhodopsin. C10-C11 stretching character is localized at 1098 cm-1 in rhodopsin, at 1154 cm-1 in isorhodopsin, and at 1166 cm-1 in bathorhodopsin. C14-C15 stretching character is found at 1190 cm-1 in rhodopsin, at 1206 cm-1 in isorhodopsin, and at 1210 cm-1 in bathorhodopsin. C12-C13 stretching character is much more delocalized, but the characteristic coupling with the C14H rock allows us to assign the "C12-C13 stretch" at approximately 1240 cm-1 in rhodopsin, isorhodopsin, and bathorhodopsin. The insensitivity of the C14-C15 stretching mode to N-deuteriation in all three pigments demonstrates that each contains a trans (anti) protonated Schiff base bond. The relatively high frequency of the C10-C11 mode of bathorhodopsin demonstrates that bathorhodopsin is s-trans about the C10-C11 single bond. This provides strong evidence against the model of bathorhodopsin proposed by Liu and Asato [Liu, R., & Asato, A. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 259], which suggests a C10-C11 s-cis structure. Comparison of the fingerprint modes of rhodopsin (1098, 1190, 1217, and 1239 cm-1) with those of the 11-cis-retinal protonated Schiff base in methanol (1093, 1190, 1217, and 1237 cm-1) shows that the frequencies of the C-C stretching modes are largely unperturbed by protein binding. In particular, the invariance of the C14-C15 stretching mode at 1190 cm-1 does not support the presence of a negative protein charge near C13 in rhodopsin. In contrast, the frequencies of the C8-C9 and C14-C15 stretches of bathorhodopsin and the C10-C11 and C14-C15 stretches of isorhodopsin are significantly altered by protein binding. The implications of these observations for the mechanism of wavelength regulation in visual pigments and energy storage in bathorhodopsin are discussed.  相似文献   

20.
Chu HA  Gardner MT  O'Brien JP  Babcock GT 《Biochemistry》1999,38(14):4533-4541
The low-frequency (<1000 cm-1) region of the IR spectrum has the potential to provide detailed structural and mechanistic insight into the photosystem II/oxygen evolving complex (PSII/OEC). A cluster of four manganese ions forms the core of the OEC and diagnostic manganese-ligand and manganese-substrate modes are expected to occur in the 200-900 cm-1 range. However, water also absorbs IR strongly in this region, which has limited previous Fourier transform infrared (FTIR) spectroscopic studies of the OEC to higher frequencies (>1000 cm-1). We have overcome the technical obstacles that have blocked FTIR access to low-frequency substrate, cofactor, and protein vibrational modes by using partially dehydrated samples, appropriate window materials, a wide-range MCT detector, a novel band-pass filter, and a closely regulated temperature control system. With this design, we studied PSII/OEC samples that were prepared by brief illumination of O2 evolving and Tris-washed preparations at 200 K or by a single saturating laser flash applied to O2 evolving and inhibited samples at 250 K. These protocols allowed us to isolate low-frequency modes that are specific to the QA-/QA and S2/S1 states. The high-frequency FTIR spectra recorded for these samples and parallel EPR experiments confirmed the states accessed by the trapping procedures we used. In the S2/S1 spectrum, we detect positive bands at 631 and 602 cm-1 and negative bands at 850, 679, 664, and 650 cm-1 that are specifically associated with these two S states. The possible origins of these IR bands are discussed. For the low-frequency QA-/QA difference spectrum, several modes can be assigned to ring stretching and bending modes from the neutral and anion radical states of the quinone acceptor. These results provide insight into the PSII/OEC and demonstrate the utility of FTIR techniques in accessing low-frequency modes in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号