首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+)/calmodulin (Ca(2+)/CaM) and the betagamma subunits of heterotrimeric G-proteins (Gbetagamma) have recently been shown to interact in a mutually exclusive fashion with the intracellular C terminus of the presynaptic metabotropic glutamate receptor 7 (mGluR 7). Here, we further characterized the core CaM and Gbetagamma binding sequences. In contrast to a previous report, we find that the CaM binding motif localized in the N-terminal region of the cytoplasmic tail domain of mGluR 7 is conserved in the related group III mGluRs 4A and 8 and allows these receptors to also bind Ca(2+)/CaM. Mutational analysis of the Ca(2+)/CaM binding motif is consistent with group III receptors containing a conventional CaM binding site formed by an amphipathic alpha-helix. Substitutions adjacent to the core CaM target sequence selectively prevent Gbetagamma binding, suggesting that the CaM-dependent regulation of signal transduction involves determinants that overlap with but are different from those mediating Gbetagamma recruitment. In addition, we present evidence that Gbetagamma uses distinct nonoverlapping interfaces for interaction with the mGluR 7 C-terminal tail and the effector enzyme adenylyl cyclase II, respectively. Although Gbetagamma-mediated signaling is abolished in receptors lacking the core CaM binding sequence, alpha subunit activation, as assayed by agonist-dependent GTPgammaS binding, was not affected. This suggests that Ca(2+)/CaM may alter the mode of group III mGluR signaling from mono- (alpha) to bidirectional (alpha and betagamma) activation of downstream effector cascades.  相似文献   

2.
Metabotropic glutamate receptor subtype 7 (mGluR7) is coupled to the inhibitory cyclic AMP cascade and is selectively activated by a glutamate analogue, L-2-amino-4-phosphonobutyrate. Among L-2-amino-4-phosphonobutyrate-sensitive mGluR subtypes, mGluR7 is highly concentrated at the presynaptic terminals and is thought to play an important role in modulation of glutamatergic synaptic transmission by presynaptic inhibition of glutamate release. To gain further insight into the intracellular signaling mechanisms of mGluR7, with the aid of glutathione S-transferase fusion affinity chromatography, we attempted to identify proteins that interact with the intracellular carboxyl terminus of mGluR7. Here, we report that calmodulin (CaM) directly binds to the carboxyl terminus of mGluR7 in a Ca(2+)-dependent manner. The CaM-binding domain is located immediately following the 7th transmembrane segment. We also show that the CaM-binding domain of mGluR7 is phosphorylated by protein kinase C (PKC). This phosphorylation is inhibited by the binding of Ca(2+)/CaM to the receptor. Conversely, the Ca(2+)/CaM binding is prevented by PKC phosphorylation. Collectively, these results suggest that mGluR7 serves to cross-link the cyclic AMP, Ca(2+), and PKC phosphorylation signal transduction cascades.  相似文献   

3.
Calmodulin (CaM), a Ca(2+)-binding protein, is a well-known regulator of various cellular functions. One of the targets of CaM is metabotropic glutamate receptor 7 (mGluR7), which serves as a low-pass filter for glutamate in the pre-synaptic terminal to regulate neurotransmission. Surface plasmon resonance (SPR), circular dichroism (CD) spectroscopy and nuclear magnetic spectroscopy (NMR) were performed to study the structure of the peptides corresponding to the CaM-binding domain of mGluR7 and their interaction with CaM. Unlike well-known CaM-binding peptides, mGluR7 has a random coil structure even in the presence of trifluoroethanol. Moreover, NMR data suggested that the complex between Ca(2+)/CaM and the mGluR7 peptide has multiple conformations. The mGluR7 peptide has been found to interact with CaM even in the absence of Ca(2+), and the binding is directed toward the C-domain of apo-CaM rather than the N-domain. We propose a possible mechanism for the activation of mGluR7 by CaM. A pre-binding occurs between apo-CaM and mGluR7 in the resting state of cells. Then, the Ca(2+)/CaM-mGluR7 complex is formed once Ca(2+) influx occurs. The weak interaction at lower Ca(2+) concentrations is likely to bind CaM to mGluR7 for the fast complex formation in response to the elevation of Ca(2+) concentration.  相似文献   

4.
Metabotropic glutamate receptors (mGluRs) are regulated by interacting proteins that mostly bind to their intracellular C-termini. Here, we investigated if mGluR6, mGluR7a and mGluR8a C-termini form predefined binding surfaces or if they were rather unstructured. Limited tryptic digest of purified peptides argued against the formation of stable globular folds. Circular dichroism, 1H NMR and 1H15N HSQC spectra indicated the absence of rigid secondary structure elements. Furthermore, we localized short linear binding motifs in the unstructured receptor domains. Our data provide evidence that protein interactions of the analyzed mGluR C-termini are mediated rather by short linear motifs than by preformed folds.  相似文献   

5.
Speranskiy K  Kurnikova M 《Biochemistry》2005,44(34):11508-11517
Ionotropic glutamate receptors (GluRs) are ligand-gated membrane channel proteins found in the central neural system that mediate a fast excitatory response of neurons. In this paper, we report theoretical analysis of the ligand-protein interactions in the binding pocket of the S1S2 (ligand binding) domain of the GluR2 receptor in the closed conformation. By utilizing several theoretical methods ranging from continuum electrostatics to all-atom molecular dynamics simulations and quantum chemical calculations, we were able to characterize in detail glutamate agonist binding to the wild-type and E705D mutant proteins. A theoretical model of the protein-ligand interactions is validated via direct comparison of theoretical and Fourier transform infrared spectroscopy (FTIR) measured frequency shifts of the ligand's carboxylate group vibrations [Jayaraman et al. (2000) Biochemistry 39, 8693-8697; Cheng et al. (2002) Biochemistry 41, 1602-1608]. A detailed picture of the interactions in the binding site is inferred by analyzing contributions to vibrational frequencies produced by protein residues forming the ligand-binding pocket. The role of mobility and hydrogen-bonding network of water in the ligand-binding pocket and the contribution of protein residues exposed in the binding pocket to the binding and selectivity of the ligand are discussed. It is demonstrated that the molecular surface of the protein in the ligand-free state has mainly positive electrostatic potential attractive to the negatively charged ligand, and the potential produced by the protein in the ligand-binding pocket in the closed state is complementary to the distribution of the electrostatic potential produced by the ligand itself. Such charge complementarity ensures specificity to the unique charge distribution of the ligand.  相似文献   

6.
The metabotropic glutamate receptor (mGluR) 4 subtype of metabotropic glutamate receptor is a presynaptic receptor that modulates neurotransmitter release. We have characterized the properties of a truncated, epitope-tagged construct containing part of the extracellular amino-terminal domain of mGluR4. The truncated receptor was secreted into the cell culture medium of transfected human embryonic kidney cells. The oligomeric structure of the soluble truncated receptor was assessed by gel electrophoresis. In the presence of high concentrations of a reducing agent, the truncated receptor migrated as a monomer; at lower concentrations of the reducing agent, only higher molecular weight oligomers were observed. Competition binding experiments using the radiolabeled agonist [3H]L-2-amino-4-phosphonobutyric acid revealed that the rank order of potency of metabotropic ligands at the truncated receptor was similar to that of the full-length membrane-bound receptor. However, the truncated receptor displayed higher affinities for agonists and lower affinities for antagonists compared with the full-length receptor. Deglycosylation produced a shift in the relative molecular weight of the soluble protein from Mr = 71,000 to Mr = 63,000; deglycosylation had no effect on the binding of [3H]L-2-amino-4-phosphonobutyric acid, indicating that the asparagine-linked carbohydrates are not necessary for agonist binding. These results demonstrate that although the primary determinants of ligand binding to mGluR4 are contained within the first 548 amino acids of the receptor, additional amino acids located downstream of this region may influence the affinity of ligands for the binding site.  相似文献   

7.
Metabotropic glutamate receptors (mGluRs) are members of a unique class of G protein-coupled receptors (class III) that include the calcium-sensing and gamma-aminobutyric acid type B receptors. The activity of mGluRs is regulated by second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). The attenuation of both mGluR1a and mGluR1b signaling by GRK2 is phosphorylation- and beta-arrestin-independent and requires the concomitant association of GRK2 with both the receptor and Galpha(q/11). G protein interactions are mediated, in part, by the mGluR1 intracellular second loop, but the domains required for GRK2 binding are unknown. In the present study, we showed that GRK2 binds to the second intracellular loop of mGluR1a and mGluR1b and also to the mGluR1a carboxyl-terminal tail. Alanine scanning mutagenesis revealed a discrete domain within loop 2 that contributes to GRK2 binding, and the mutation of either lysine 691 or 692 to an alanine within this domain resulted in a loss of GRK2 binding to both mGluR1a and mGluR1b. Mutation of either Lys(691) or Lys(692) prevented GRK2-mediated attenuation of mGluR1b signaling, whereas the mutation of only Lys(692) prevented GRK2-mediated inhibition of mGluR1a signaling. Thus, the mGluR1a carboxyl-terminal tail may also be involved in regulating the signaling of the mGluR1a splice variant. Taken together, our findings indicated that kinase binding to an mGluR1 domain involved in G protein-coupling is essential for the phosphorylation-independent attenuation of signaling by GRK2.  相似文献   

8.
9.
The amino-terminal domain containing the ligand binding site of the G protein-coupled metabotropic glutamate receptors (mGluRs) consists of two lobes that close upon agonist binding. In this study, we explored the ligand binding pocket of the Group III mGluR4 receptor subtype using site-directed mutagenesis and radioligand binding. The selection of 16 mutations was guided by a molecular model of mGluR4, which was based on the crystal structure of the mGluR1 receptor. Lysines 74 and 405 are present on lobe I of mGluR4. The mutation of lysine 405 to alanine virtually eliminated the binding of the agonist [(3)H]l-amino-4-phosphonobutyrate ([(3)H]l-AP4). Thus lysine 405, which is conserved in all eight mGluRs, likely represents a fundamental recognition residue for ligand binding to the mGluRs. Single point mutations of lysines 74 or 317, which are not conserved in the mGluRs, to alanine had no effect on agonist affinity, whereas mutation of both residues together caused a loss of ligand binding. Mutation of lysine 74 in mGluR4, or the analogous lysine in mGluR8, to tyrosine (mimicking mGluR1 at this position) produced a large decrease in binding. The reduction in binding is likely due to steric hindrance of the phenolic side chain of tyrosine. The mutation of glutamate 287 to alanine, which is present on lobe II and is not conserved in the mGluR family, caused a loss of [(3)H]l-AP4 binding. We conclude that the determinants of high affinity ligand binding are dispersed across lobes I and II. Our results define a microenvironment within the binding pocket that encompasses several positively charged amino acids that recognize the negatively charged phosphonate group of l-AP4 or the endogenous compound l-serine-O-phosphate.  相似文献   

10.
Apolipoprotein (apo) E-containing high density lipoprotein particles were reported to interact in vitro with the proteoglycan biglycan (Bg), but the direct participation of apoE in this binding was not defined. To this end, we examined the in vitro binding of apoE complexed with dimyristoylphosphatidylcholine (DMPC) to human aortic Bg before and after glycosaminoglycan (GAG) depletion. In a solid-phase assay, apoE.DMPC bound to Bg and GAG-depleted protein core in a similar manner, suggesting a protein-protein mode of interaction. The binding was decreased in the presence of 1 m NaCl and was partially inhibited by either positively (0.2 m lysine, arginine) or negatively charged (0.2 m aspartic, glutamic) amino acids. A recombinant apoE fragment representing the C-terminal 10-kDa domain, complexed with DMPC, bound as efficiently as full-length apoE, whereas the N-terminal 22-kDa domain was inactive. Similar results were obtained with a gel mobility shift assay. Competition studies using a series of recombinant truncated apoEs showed that the charged segment in the C-terminal domain between residues 223 and 230 was involved in the binding. Overall, our results demonstrate that the C-terminal domain contains elements critical for the binding of apoE to the Bg protein core and that this binding is ionic in nature and independent of GAGs.  相似文献   

11.
Metabotropic glutamate receptor (mGluR) subtype 1 is a Class III G-protein-coupled receptor that is mainly expressed on the post-synaptic membrane of neuronal cells. The receptor has a large N-terminal extracellular ligand binding domain that forms a homodimer, however, the intersubunit communication of ligand binding in the dimer remains unknown. Here, using the intrinsic tryptophan fluorescence change as a probe for ligand binding events, we examined whether allosteric properties exist in the dimeric ligand binding domain of the receptor. The indole ring of the tryptophan 110, which resides on the upper surface of the ligand binding pocket, sensed the ligand binding events. From saturation binding curves, we have determined the apparent dissociation constants (K(0.5)) of representative agonists and antagonists for this receptor (3.8, 0.46, 40, and 0.89 microm for glutamate, quisqualate, (S)-alpha-methyl-4-carboxyphenylglycine ((S)-MCPG), and (+)-2-methyl-4-carboxyphenylglycine (LY367385), respectively). Calcium ions functioned as a positive modulator for agonist but not for antagonist binding (K(0.5) values were 1.3, 0.21, 59, and 1.2 microm for glutamate, quisqualate, (S)-MCPG, and LY367385, respectively, in the presence of 2.0 mm calcium ion). Moreover, a Hill analysis of the saturation binding curves revealed the strong negative cooperativity of glutamate binding between each subunit in the dimeric ligand binding domain. As far as we know, this is the first direct evidence that the dimeric ligand binding domain of mGluR exhibits intersubunit cooperativity of ligand binding.  相似文献   

12.
The metabotropic glutamate receptor 7a (mGluR7a), a heptahelical Galpha(i/o)-coupled protein, has been shown to be important for presynaptic feedback inhibition at central synapses and certain forms of long term potentiation and long term depression. The intracellular C terminus of mGluR7a interacts with calmodulin in a Ca(2+)-dependent manner, and calmodulin antagonists have been found to abolish presynaptic inhibition of glutamate release in neurons and mGluR7a-induced activation of G-protein-activated inwardly rectifying K(+) channel (GIRK) channels in HEK293 cells. Here, we characterized the Ca(2+) dependence of mGluR7a signaling in Xenopus oocytes by using channelrhodopsin-2 (ChR2), a Ca(2+)-permeable, light-activated ion channel for triggering Ca(2+) influx, and a GIRK3.1/3.2 concatemer to monitor mGluR7a responses. Application of the agonist (S)-2-amino-4-phosphonobutanoic acid (l-AP4) (1-100 mum) caused a dose-dependent inward current in high K(+) solutions due to activation of GIRK channels by G-protein betagamma subunits released from mGluR7a. Elevation of intracellular free Ca(2+) by light stimulation of ChR2 markedly increased the amplitude of l-AP4 responses, and this effect was attenuated by the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). l-AP4 responses were potentiated by submembranous [Ca(2+)] levels within physiological ranges and with a threshold close to resting [Ca(2+)](i) values, as determined by recording the endogenous Xenopus Ca(2+)-activated chloride conductance. Together, these results show that l-AP4-dependent mGluR7a signaling is potentiated by physiological levels of [Ca(2+)](i), consistent with a model in which presynaptic mGluR7a acts as a coincidence detector of Ca(2+) influx and glutamate release.  相似文献   

13.
Interaction between metabotropic glutamate receptor 7 and alpha tubulin   总被引:1,自引:0,他引:1  
Metabotropic glutamate receptors (mGluRs) mediate a variety of responses to glutamate in the central nervous system. A primary role for group-III mGluRs is to inhibit neurotransmitter release from presynaptic terminals, but the molecular mechanisms that regulate presynaptic trafficking and activity of group-III mGluRs are not well understood. Here, we describe the interaction of mGluR7, a group-III mGluR and presynaptic autoreceptor, with the cytoskeletal protein, alpha tubulin. The mGluR7 carboxy terminal (CT) region was expressed as a GST fusion protein and incubated with rat brain extract to purify potential mGluR7-interacting proteins. These studies yielded a single prominent mGluR7 CT-associated protein of 55 kDa, which subsequent microsequencing analysis revealed to be alpha tubulin. Coimmunoprecipitation assays confirmed that full-length mGluR7 and alpha tubulin interact in rat brain as well as in BHK cells stably expressing mGluR7a, a splice variant of mGluR7. In addition, protein overlay experiments showed that the CT domain of mGluR7a binds specifically to purified tubulin and calmodulin, but not to bovine serum albumin. Further pull-down studies revealed that another splice variant mGluR7b also interacts with alpha tubulin, indicating that the binding region is not localized to the splice-variant regions of either mGluR7a (900-915) or mGluR7b (900-923). Indeed, deletion mutagenesis experiments revealed that the alpha tubulin-binding site is located within amino acids 873-892 of the mGluR7 CT domain, a region known to be important for regulation of mGluR7 trafficking. Interestingly, activation of mGluR7a in cells results in an immediate and significant decrease in alpha tubulin binding. These data suggest that the mGluR7/alpha tubulin interaction may provide a mechanism to control access of the CT domain to regulatory molecules, or alternatively, that this interaction may lead to morphological changes in the presynaptic membrane in response to receptor activation.  相似文献   

14.
This Letter describes the synthesis and evaluation of mGluR7 antagonists in the isoxazolopyridone series. In the course of modification in this class, novel solid support synthesis of the isoxazolopyridone scaffold was developed. Subsequent chemical modification led to the identification of several potent derivatives with improved physicochemical properties compared to a hit compound 1. Among these, 2 showed good oral bioavailability and brain penetrability, suggesting that 2 may be useful for in vivo study to elucidate the role of mGluR7.  相似文献   

15.
The structure of C-terminal domain (CaD136, C-terminal residues 636-771) of chicken gizzard caldesmon has been analyzed by a variety of physico-chemical methods. We are showing here that CaD136 does not have globular structure, has low secondary structure content, is essentially noncompact, as it follows from high R(g) and R(S) values, and is characterized by the absence of distinct heat absorption peaks, i.e. it belongs to the family of natively unfolded (or intrinsically unstructured) proteins. Surprisingly, effective binding of single calmodulin molecule (K(d) = 1.4 +/- 0.2 microM) leads only to a very moderate folding of this protein and CaD136 remains substantially unfolded within its tight complex with calmodulin. The biological significance of these observations is discussed.  相似文献   

16.
17.
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled glutamate receptors that subserve a number of diverse functions in the central nervous system. The large extracellular amino-terminal domains (ATDs) of mGluRs are homologous to the periplasmic binding proteins in bacteria. In this study, a region in the ATD of the mGluR4 subtype of mGluR postulated to contain the ligand-binding pocket was explored by site-directed mutagenesis using a molecular model of the tertiary structure of the ATD as a guiding tool. Although the conversion of Arg(78), Ser(159), or Thr(182) to Ala did not affect the level of protein expression or cell-surface expression, all three mutations severely impaired the ability of the receptor to bind the agonist L-[(3)H]amino-4-phosphonobutyric acid. Mutation of other residues within or in close proximity to the proposed binding pocket produced either no effect (Ser(157) and Ser(160)) or a relatively modest effect (Ser(181)) on ligand affinity compared with the Arg(78), Ser(159), and Thr(182) mutations. Based on these experimental findings, together with information obtained from the model in which the glutamate analog L-serine O-phosphate (L-SOP) was "docked" into the binding pocket, we suggest that the hydroxyl groups on the side chains of Ser(159) and Thr(182) of mGluR4 form hydrogen bonds with the alpha-carboxyl and alpha-amino groups on L-SOP, respectively, whereas Arg(78) forms an electrostatic interaction with the acidic side chains of L-SOP or glutamate. The conservation of Arg(78), Ser(159), and Thr(182) in all members of the mGluR family indicates that these amino acids may be fundamental recognition motifs for the binding of agonists to this class of receptors.  相似文献   

18.
N-methyl-d-aspartate (NMDA) receptors are calcium-permeable ion channels assembled from four subunits that each have a common membrane topology. The intracellular carboxyl terminal domain (CTD) of each subunit varies in length, is least conserved between subunits, and binds multiple intracellular proteins. We defined a region of interest in the GluN2A CTD, downstream of well-characterized membrane-proximal motifs, that shares only 29% sequence similarity with the equivalent region of GluN2B. GluN2A (amino acids 875–1029) was fused to GST and used as a bait to identify proteins from mouse brain with the potential to bind GluN2A as a function of calcium. Using mass spectrometry we identified calmodulin as a calcium-dependent GluN2A binding partner. Equilibrium fluorescence spectroscopy experiments indicate that Ca2+/calmodulin binds GluN2A with high affinity (5.2 ± 2.4 nM) in vitro. Direct interaction of Ca2+/calmodulin with GluN2A was not affected by disruption of classic sequence motifs associated with Ca2+/calmodulin target recognition, but was critically dependent upon Trp-1014. These findings provide new insight into the potential of Ca2+/calmodulin, previously considered a GluN1-binding partner, to influence NMDA receptors by direct association.  相似文献   

19.
In the twelve years since the molecular elucidation of the metabotropic glutamate receptor subtype 1, a class III family of G-protein-coupled receptors has emerged; members of this family include the calcium-sensing receptor, the GABA(B) receptor, some odorant receptors and some taste receptors. Atomic structures of the ligand-binding core of the original metabotropic glutamate receptor 1 obtained using X-ray crystallography provide a foundation for determining the initial receptor activation of this important family of G-protein-coupled receptors.  相似文献   

20.
Regulated trafficking of neurotransmitter receptors is critical to normal neurodevelopment and neuronal signaling. Group I mGluRs (mGluR1/5 and their splice variants) are G protein-coupled receptors enriched at excitatory synapses, where they serve to modulate glutamatergic transmission. The mGluR1 splice variants mGluR1a and mGluR1b are broadly expressed in the central nervous system and differ in their signaling and trafficking properties. Several proteins have been identified that selectively interact with mGluR1a and participate in receptor trafficking but no proteins interacting with mGluR1b have thus far been reported. We have used a proteomic strategy to isolate and identify proteins that co-purify with mGluR1b in Madin-Darby Canine Kidney (MDCK) cells, an established model system for trafficking studies. Here, we report the identification of 10 novel candidate mGluR1b-interacting proteins. Several of the identified proteins are structural components of the cell cytoskeleton, while others serve as cytoskeleton-associated adaptors and motors or endoplasmic reticulum-associated chaperones. Findings from this work will help unravel the complex cellular mechanisms underlying mGluR trafficking under physiological and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号