首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the feasibility and engineering aspects of acidophilic ferrous iron oxidation in a continuous biofilm airlift reactor inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria were investigated. Specific attention was paid to biofilm formation, competition between both types of bacteria, ferrous iron oxidation rate, and gas liquid mass transfer limitations. The reactor was operated at a constant temperature of 30 degrees C and at pH values of 0-1.8. Startup of the reactor was performed with basalt carrier material. During the experiments the basalt was slowly removed and the ferric iron precipitates formed served as a biofilm carrier. These precipitates have highly suitable characteristics as a carrier material for the immobilization of ferrous iron-oxidizing bacteria and dense conglomerates were observed. Lowering the pH (0.6-1) resulted in dissolution of the ferric precipitates and induced granular sludge formation. The maximum ferrous iron oxidation rate achieved in this study was about 145 molFe(2+)/m(3).h at a hydraulic residence time of 0.25 h. Optimal treatment performance was obtained at a loading rate of 100 mol/m(3).h at a conversion efficiency as high as 98%. Fluorescent in situ hybridization (FISH) studies showed that when the reactor was operated at high ferrous iron conversion (>85%) for 1 month, the desirable L. ferrooxidans species could out-compete A. ferrooxidans due to the low Fe(2+) and high Fe(3+) concentrations.  相似文献   

2.
Acidithiobacillus ferrooxidans 对Fe2+的生物氧化是一个非常重要的反应过程, 在生物浸矿、H2S等废气的脱硫、含重金属污泥和酸性矿坑废水的处理等领域有着重要的应用。近些年来,大量的研究主要集中A. ferrooxidans及其反应过程等方面,然而,A. ferrooxidans对Fe2+的催化氧化速率缓慢和稳定性欠佳等问题仍然限制了其商业应用。因此,对A. ferrooxidans的固定化及其生物反应器研究是该技术进一步发展的关键。本文评述了A. ferrooxidans最新应用、存在的问题和解决办法,重点比较了目前文献中报道的各种A. ferrooxidans固定材料、方法,并对目前采用的各种固定化A. ferrooxidans生物反应系统的效率和结构等方面进行了讨论和分析。  相似文献   

3.
Ferrous iron bio‐oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket‐type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet‐type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket‐type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio‐oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
嗜酸氧化亚铁硫杆菌生长动力学   总被引:1,自引:1,他引:1  
在确定二价铁离子为A.f生长过程中惟一限制性底物条件下,通过考察初始亚铁离子浓度、初始pH值两种影响亚铁离子氧化代谢的主要因素来研究细菌的生长特性,得到以限制性底物亚铁离子浓度为表征的细菌生长曲线。利用基于Monod方程建立的细菌生长动力学方程模型,采用Matlab软件中的Gauss-Newton算法确定了在不同条件下细菌生长动力学参数,包括最大比生长速率μm、Monod常数K及Ro,推导出了不同条件下A.f对数期以底物Fe(Ⅱ)浓度为表征的生长动力学方程。  相似文献   

5.
【目的】铁硫簇是最古老的一种氧化还原中心,它普遍存在于所有生命体内,在光合作用、呼吸作用和固氮作用这三个地球生命最基本的代谢途径中扮演着重要的角色。【方法】以嗜酸氧化亚铁硫杆菌(A.ferrooxidans ATCC 23270)基因组为模板,克隆表达其ISC铁硫簇组装的3个核心蛋白,IscS(半胱氨酸脱硫酶蛋白)、IscU(支架蛋白)和IscA(铁供体蛋白)。【结果】研究发现IscS能催化半胱氨酸脱硫,为铁硫簇的组装提供硫,支架蛋白IscU不具备结合铁的能力,IscA具有较强的铁结合能力。【结论】铁硫簇体外组装证明Fe-IscA在体外能将结合的铁传递给IscS,并在IscU上进行铁硫簇的组装。  相似文献   

6.
本研究从剩余活性污泥中分离得到两株土著硫杆菌。对两株菌进行了分类鉴定。确立二者分别为嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans, A. f)和嗜酸性氧化硫硫杆菌(Acidithiobacillus thiooxidans, A. t)。将二者的单菌和混合菌分别接种于剩余活性污泥中, 进行了为期9 d的生物淋滤, 对淋滤过程中的pH变化、氧化还原电位(ORP)以及重金属含量进行了检测。结果表明, 生物淋滤9 d混合菌对于As、Cr、Cu、Ni和Zn的去除效果最好; 去除率分别达到了96.09%、93.47%、98.32%、97.88%和98.60%。对于Cd和Pb混合菌生物淋滤的去除率在第6天之后迅速下降, 但是A. t单菌淋滤保持较高的去除率。  相似文献   

7.
邱并生 《微生物学通报》2010,37(4):0614-0614
生物淋滤法(Bioleaching)是指利用自然界中一些微生物(硫细菌)的直接作用或其代谢产物的间接作用,产生氧化、还原、络合、吸附或溶解反应,将固相中某些不溶性成分(如重金属、硫及其他金属)分离浸提出来的技术.在生物淋滤中,嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,A.f)和嗜酸性氧化硫硫杆菌(Acidithiobacillus thiooxidans,A.f)被用作有效的淋滤载体[1].这种嗜酸性的化能自养型细菌以大气中的CO2为碳源,以无机物铁或硫为能源来维持生长,不需要提供外来的碳源和电子供体.另外,由于pH值很低,抑制了其他细菌的生长,所以在实际的操作过程中不需要严格的无菌条件.氧化亚铁硫杆菌和氧化硫硫杆菌去除重金属适宜于污水处理厂的开放系统,采用土著嗜酸性氧化亚铁硫杆菌(A.f)和氧化硫硫杆菌(A.f)进行重金属去除.也就是说,处理什么地方的污泥,就在什么地方分离A.f和A.t,这样分离的微生物在生物淋滤过程中能发挥较好的作用.这也是微生物在自然界生长繁殖的特点之一. 本期介绍了王聪、宋存江等[2]从剩余活性污泥中分离得到两株土著硫杆菌,对两株菌进行了分类鉴定,确定二者分别为嗜酸性氧化亚铁硫杆菌杆(Acidithiobacillus ferrooxidans,A.f)和嗜酸性氧化硫硫杆菌(Acidithiobacillus thiooxidans,A.t),将二者的单菌和混合菌分别接种于剩余活性污泥中,进行了为期9 d的生物淋滤,对淋滤过程中的pH变化、氧化还原电位(ORP)以及重金属含量进行了检测.结果表明,生物淋滤9 d的混合菌对于As、Cr、Cu、Ni和Zn的去除效果最好,去除率分别达到了96.09%、93.47%、98.32%、97.88%和98.60%.混合菌生物淋滤对于Cd和Pb的去除率在第6天之后迅速下降,但是A.t单菌淋滤保持较高的去除率,此结果为进一步的应用打下了良好的基础.  相似文献   

8.
Bacterial oxidation of ferrous iron at low temperatures   总被引:1,自引:0,他引:1  
This study comprises the first report of ferrous iron oxidation by psychrotolerant, acidophilic iron-oxidizing bacteria capable of growing at 5 degrees C. Samples of mine drainage-impacted surface soils and sediments from the Norilsk mining region (Taimyr, Siberia) and Kristineberg (Skellefte district, Sweden) were inoculated into acidic ferrous sulfate media and incubated at 5 degrees C. Iron oxidation was preceded by an approximately 3-month lag period that was reduced in subsequent cultures. Three enrichment cultures were chosen for further work and one culture designated as isolate SS3 was purified by colony isolation from a Norilsk enrichment culture for determining the kinetics of iron oxidation. The 16S rRNA based phylogeny of SS3 and two other psychrotolerant cultures, SS5 from Norilsk and SK5 from Northern Sweden, was determined. Comparative analysis of amplified 16S rRNA gene sequences showed that the psychrotolerant cultures aligned within Acidithiobacillus ferrooxidans. The rate constant of iron oxidation by growing cultures of SS3 was in the range of 0.0162-0.0104 h(-1) depending on the initial pH. The oxidation kinetics followed an exponential pattern, consistent with a first order rate expression. Parallel iron oxidation by a mesophilic reference culture of Acidithiobacillus ferrooxidans was extremely slow and linear. Precipitates harvested from the 5 degrees C culture were identified by X-ray diffraction as mixtures of schwertmannite (ideal formula Fe(8)O(8)(OH)(6)SO(4)) and jarosite (KFe(3)(SO(4))(2)(OH)(6)). Jarosite was much more dominant in precipitates produced at 30 degrees C.  相似文献   

9.
【目的】了解嗜酸异养菌在诸如酸性矿坑水(AMD)和生物浸出体系等极端酸性环境中对浸矿微生物产生的影响。【方法】研究由嗜酸异养菌Acidiphilium acidophilum和自养菌Acidithiobacillus ferrooxidans经长期驯化后形成的共培养体系分别在Cd2+、Cu2+、Ni2+和Mg2+胁迫下的稳定性;并将此共培养体系应用于黄铁矿和低品位黄铜矿的生物浸出实验。【结果】在上述4种金属离子分别存在的条件下,异养菌Aph.acidophilum均能促进At.ferrooxidans对亚铁的氧化,提高其对能源利用的效率。共培养体系中的异养菌Aph.acidophilum使At.ferrooxidans对Cu2+的最大耐受浓度(MTC)由2.0 g/L提高到5.0 g/L,而且共培养的细胞数量与2.0 g/L Cu2+条件下生长的At.ferrooxidans纯培养相似。另外,共培养中的At.ferrooxidans对Mg2+的MTC也由12.0 g/L提高到17.0 g/L。生物浸出实验中嗜酸异养菌Aph.acidophilum促进了At.ferrooxidans对黄铁矿样品的浸出,浸出率较其纯培养提高了22.7%;但在含铁量较低的低品位黄铜矿浸出体系中共培养和At.ferrooxidans纯培养的浸出率均低于33%。在加入2.0 g/L Fe2+的低品位黄铜矿浸出体系中,共培养和At.ferrooxidans纯培养的浸出率均得到提高,分别达到52.22%和41.27%。【结论】以上结果表明,Aph.acidophilum与At.ferrooxidans共培养在一定的环境胁迫下仍能保持其稳定性并完成各自的生态功能,并且嗜酸异养菌Aph.acidophilum适合在含铁量较高的浸出体系中与铁氧化细菌共同作用来提高生物浸出的效率。  相似文献   

10.
Abstract Anaerobic growth on elemental sulfur using dissimilar iron reduction by Thiobacillus ferrooxidans has been demonstrated. The ferric ion reducing activity (FIR) of the anaerobic cells was double that of the aerobic cells. Significant differences in inhibition of FIR by respiratory inhibitors were observed between aerobic and anaerobic cells. A higher amount of cytochrome was detected in anaerobic cells compared to aerobic cells. Absorption minima developed with the addition of ferric sulfate in the dithionite reduced cell suspension demonstrated that the ferric ion could accept electrons from the cytochrome system of this bacterium. The possibility of two different electron transport chains in ferric ion reduction is discussed.  相似文献   

11.
目的:氧化亚铁硫杆菌(Acidithiobocllius ferrooxidans)在微生物冶金中发挥着重要的作用,研究其铜代谢机理有着十分典型的意义.在A.ferrooxidans全基因组序列数据库中,4个基因被注释与铜代谢相关.其中两个基因,Afe0454和Afe1073目前为止未发现有实验报道.本文旨在研究Afe0454和Afe1073与铜代谢的相关性.方法:通过一系列的方法如实时定量PER、反转录PER、序列分析,将基因导入抗铜基因缺陷的大肠杆菌(Escherichia coli)菌株中等,研究了Afe0454和Afe1073.结果:与Afe0454相比,Afe1073的表达对铜压力更敏感;Afe1073作为一个转录子单独转录,而Afe0454与Afe0453一起转录;序列分析显示Afe1073表达一种典型的重金属离子泵P1b1型ATP酶,而Afe0454表达一种未知功能的跨膜蛋白;不像Afe0454,Afe1073能使P1b型ATP酶敲除的大肠杆菌菌株铜抗性提高.结论:单独转录的Afe1073比Afe0454在铜代谢中发挥的作用更加明显.  相似文献   

12.
在嗜酸性氧化亚铁硫杆菌Acidithiobacillus ferrooxidans作用下, 污泥生物沥浸体系中常会有次生铁矿物形成, 这些矿物对污泥脱水和重金属溶出有重要影响。在FeSO4-K2SO4-H2O生物成矾临界点模拟生物沥浸过程, 考察了Acidithiobacillus ferrooxidans菌接种密度和矿物收集时间对次生铁矿物的影响。结果表明, 微生物接种密度和矿物收集时间对生物沥浸过程中次生铁矿物的重量及其类型均有一定影响, 随矿物收集时间的推迟, 溶液中含有的一价阳离子(如K+等)可导致施氏矿物向黄铁矾发生转变, 并成为影响铁矿物类型的主导因素。  相似文献   

13.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

14.
Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 μM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 μM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and performance across varying physiological conditions.  相似文献   

15.
The effects of pH, ferrous and ferric ion concentrations on iron oxidation by Thiobacillus ferrooxidans were examined. The initial temperature and bacterial concentration were maintained at 37°C and 2±1×104cells/ml, respectively. The iron oxidation rate increased with increased initial ferrous iron concentration to 4g/l and thereafter decreased. The presence of iron(III) showed a negative effect on the bacterial iron oxidation rate. The increase of pH also showed an increase in the oxidation rate up to pH 1.75. The oxidation rate followed first order kinetics for the parameters studied. A rate equation has been developed.  相似文献   

16.
Acidithiobacillus ferrooxidans strain D3-2, which has a high copper bioleaching activity, was isolated from a low-grade sulfide ore dump in Chile. The amounts of Cu2+ solubilized from 1% chalcopyrite (CuFeS2) concentrate medium (pH 2.5) by A. ferrooxidans strains D3-2, D3-6, and ATCC 23270 and 33020 were 1360, 1080, 650, and 600 mg·l ?1·30 d?1. The iron oxidase activities of D3-2, D3-6, and ATCC 23270 were 11.7, 13.2, and 27.9 μl O2 uptake·mg protein?1·min?1. In contrast, the sulfite oxidase activities of strains D3-2, D3-6, and ATCC 23270 were 5.8, 2.9, and 1.0 μl O2 uptake·mg protein?1·min?1. Both of cell growth and Cu-bioleaching activity of strains D3-6 and ATCC 23270, but not, of D3-2, in the chalcopyrite concentrate medium were completely inhibited in the presence of 5 mM sodium bisulfite. The sulfite oxidase of strain D3-2 was much more resistant to sulfite ion than that of strain ATCC 23270. Since sulfite ion is a highly toxic intermediate produced during sulfur oxidation that strongly inhibits iron oxidase activity, these results confirm that strain D3-2, with a unique sulfite resistant-sulfite oxidase, was able to solubilize more copper from chalcopyrite than strain ATCC 23270, with a sulfite-sensitive sulfite oxidase.  相似文献   

17.
Acidithiobacillus ferrooxidans was immobilized in poly(vinyl alcohol) (PVA) by a PVA–boric acid method, and spherical beads of uniform size were produced. Biooxidation of ferrous iron by immobilized cells was investigated in repeated batch culture and continuous operation in a laboratory scale packed-bed bioreactor. During repeated batch culture, the cell-immobilized gels were stable and showed high constant iron-oxidizing activity. In continuous operation in a packed-bed bioreactor, biooxidation of ferrous iron fits a plug-flow reaction model well. A maximum Fe2+ oxidation rate of 1.89 g l−1 h−1 was achieved at the dilution rate of 0.38 h−1 or higher, while no obvious precipitate was detected in the bioreactor.  相似文献   

18.
The kinetics of sulfur oxidation by Acidithiobacillus ferrooxidans in shaking flasks and a 10-L reactor was studied. The observed linearity of growth and sulfur oxidation was explained by sulfur limitation. Total cell yield was not significantly different for exponential growth as compared to growth during the sulfur-limiting phase. Kinetic studies of sulfur oxidation by growing and nongrowing bacteria indicated that both free and adsorbed bacteria oxidize sulfur. Changes in the number of free bacteria rather than cells adsorbed on sulfur were better predictors of the kinetics of sulfur oxidation, indicating that the free bacteria were performing sulfur oxidation. The active growth phase always followed adsorption of bacteria on sulfur; however, the special metabolic role of adsorbed bacteria was unclear. Their activity in sulfur solubilization was considered.  相似文献   

19.
A comparative analysis of the protein composition of Acidithiobacillus ferrooxidans cells grown on elemental sulfur and ferrous iron was performed. A newly developed protocol involving immobilized pH gradients, improved protein reduction, mass spectrometry protein identification and full genome sequence information was applied. This approach resulted in more than 1300 protein spots displayed in broad and basic pH ranges, the best A. ferrooxidans proteome resolution to date. A comparative image analysis revealed that the proteome was significantly influenced by the growth type, and allowed for the detection of many physiologically important proteins. Among them were sulfate adenylyltransferase and sulfide dehydrogenase, which are involved in sulfate assimilation and sulfide metabolism, respectively. Many other proteins were related to important processes like cell attachment and electron transport. Co-migration of phosphate and sulfate transport proteins was also observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号