首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major anatomical characteristics of the main axis of the basal ganglia are: (1) Numerical reduction in the number of neurons across layers of the feed-forward network, (2) lateral inhibitory connections within the layers, and (3) neuro-modulatory effects of dopamine and acetylcholine, both on the basal ganglia neurons and on the efficacy of information transmission along the basal ganglia axis. We recorded the simultaneous activity of neurons in the output stages of the basal ganglia as well as the activity of dopaminergic and cholinergic neurons during the performance of a probability decision-making task. We found that the functional messages of the cholinergic and dopaminergic neurons differ, and that the cholinergic message is less specific than that of the dopaminergic neurons. The output stage of the basal ganglia showed uncorrelated neuronal activity. We conclude that despite the huge numerical reduction from the cortex to the output nuclei of the basal ganglia, the activity of these nuclei represents an optimally compressed (uncorrelated) version of distinctive features of cortical information.  相似文献   

2.
Previously proposed unitary modification rules and known experimental data were used for understanding possible mechanisms of reorganization of firing patterns of neurons in the output basal ganglia nuclei. According to the suggested mechanism, a switch from regular-spiking to bursting activity evoked by systemic inactivation of N-methyl-d-aspartate (NMDA) receptors or dopaminic receptors mainly depends on modifications of cortico-striatal synapses whereas the opposite effect of inactivation of the same receptors directly on the output basal ganglia cells is less effective. We hypothesized that some of the output basal ganglia nuclei neurons which can generate bursting discharges due to inactivation of NMDA and dopaminic receptors are glutamatergic or cholinergic cells.  相似文献   

3.
In this study we have demonstrated that noradrenaline increases the levels of prostaglandin E2 and prostaglandin I2 (detected as the stable metabolite 6-keto-prostaglandin F1 alpha) synthesized by homogenates of superior cervical ganglia from the adult rat. This noradrenaline-induced prostaglandin production was further characterized: (a) Selective destruction of adrenergic sympathetic postganglionic neurons in the ganglia using 6-hydroxydopamine abolished both basal and stimulated prostaglandin production. (b) Elimination of preganglionic cholinergic sympathetic nerve terminals in the ganglia had no effect. (c) Mepacrine (a phospholipase inhibitor) and indomethacin (a cyclooxygenase inhibitor) attenuated both basal and stimulated prostaglandin production. (d) Yohimbine, but not prazosin, suppressed the noradrenaline dose-response curve for prostaglandin production. The results of these experiments show that, in vitro, noradrenaline stimulates de novo synthesis of prostaglandin E2 and prostaglandin I2 by sympathetic postganglionic neurons. This stimulation by noradrenaline appears to result from action at an alpha 2-adrenergic receptor.  相似文献   

4.
Cholinergic systems in the midbrain of the eel were identified by using histochemical procedures for the demonstration of the enzymes choline acetyltransferase (ChAT) and acetylcholinesterase. Neurons detected by both methods are located in the stratum periventriculare of the tectum, cranial motor nuclei III and IV, nucleus isthmi, nucleus gustatorius secundarius, nucleus reticularis superior, and nucleus lateralis valvulae. Some projections of these cell groups were studied by injecting horseradish peroxidase into selected brain regions. Cholinergic neurons make up about 10% of the neurons in the stratum periventriculare of the tectum and are a subset of the type-XIV neurons. Neurons in n. isthmi project primarily to the ipsilateral tectum; some cholinergic isthmal neurons project to n. pretectalis superficialis. A few ChAT-positive axons, perhaps belonging to the tectopetal system, were observed in the optic nerve. The cholinergic neurons of n. gustatorius secundarious project to the inferior lobes of the hypothalamus. The neurons of the superior reticular nucleus are a cholinergic subset of the superior reticular formation. Their axons project rostrally, probably to the thalamus and pretectum. The findings are discussed in relation to functional features of the mesencephalon, particularly in relation to locomotory control.  相似文献   

5.
Cholinergic neurons in the dorsal motor nucleus of the vagus (DMNV) are particularly vulnerable to laryngeal nerve damage, possibly because they lack fibroblast growth factor-1 (FGF1). To test this hypothesis, we investigated the localization of FGF1 in cholinergic neurons innervating the rat larynx by immunohistochemistry using central-type antibodies to choline acetyltransferase (cChAT) and peripheral type (pChAT) antibodies, as well as tracer experiments. In the DMNV, only 9% of cChAT-positive neurons contained FGF1, and 71% of FGF1-positive neurons colocalized with cChAT. In the nucleus ambiguus, 100% of cChAT-positive neurons were FGF1 positive. In the intralaryngeal ganglia, all ganglionic neurons contained both pChAT and FGF1. In the nodose ganglia, 66% of pChAT-positive neurons were also positive for FGF1, and 90% of FGF1-positive ganglionic cells displayed pChAT immunoreactivity. Neuronal tracing using cholera toxin B subunit (CTb) demonstrated that cholinergic neurons sending their axons from the DMNV and nucleus ambiguus to the superior laryngeal nerve were FGF1 negative and FGF1 positive, respectively. In the nodose ganglia, some FGF1-positive cells were labeled with CTb. The results indicate that for innervation of the rat larynx, FGF1 is localized to motor neurons, postganglionic parasympathetic neurons, and sensory neurons, but expression is very low in preganglionic parasympathetic cholinergic neurons.  相似文献   

6.
The telencephalon is organized into distinct longitudinal domains: the cerebral cortex and the basal ganglia. The basal ganglia primarily consists of a dorsal region (striatum) and a ventral region (pallidum). Within the telencephalon, the anlage of the pallidum expresses the Nkx2.1 homeobox gene. A mouse deficient in Nkx2.1 function does not form pallidal structures, lacks basal forebrain TrkA-positive neurons (probable cholinergic neurons) and has reduced numbers of cortical cells expressing GABA, DLX2 and calbindin that migrate from the pallidum through the striatum and into the cortex. We present evidence that these phenotypes result from a ventral-to-dorsal transformation of the pallidal primordium into a striatal-like anlage.  相似文献   

7.
A possible mechanism of influence of neuromodulators on interdependent activity of neurons in the diverse basal ganglia nuclei is suggested. According to modulation rules, an activation of postsynaptic Gs- or Gq/11-(Gi/0-) protein coupled receptors promotes induction of long-term potentiation (depression) of excitatory inputs to different neurons and augmentation (lowering) of their activity; an activation of presynaptic Gs- or Gq/11-(Gi/0-) protein coupled receptors promotes a rise (decrease) of release of GABA and co-peptides from striatal terminals and glutamate release from subthalamic terminals in the globus pallidus and output nuclei. It follows from the modulation rules that, since identical receptors are present on striatal neuron and their axon terminals, effects of neuromodulator action in diverse basal ganglia nuclei can be summarized. Neuromodulators released from striato-nigral and striato-pallidal fibers could promote interdependent activity of neurons in "direct" and "indirect" pathways through the basal ganglia due to convergence of these fibers on cholinergic interneurons and pallido-striatal cells.  相似文献   

8.
Acetylcholine (ACh) stimulates contraction of the uterus and dilates the uterine arterial supply. Uterine cholinergic nerves arise from the paracervical ganglia and were, in the past, characterized based on acetylcholinesterase (AChE) histochemistry. However, the histochemical reaction for acetylcholinesterase provides only indirect evidence of acetylcholine location and is a nonspecific marker for cholinergic nerves. The present study: (1) reevaluated cholinergic neurons of the paracervical ganglia, (2) examined the cholinergic innervation of the uterus by using retrograde axonal tracing and antibodies against molecules specific to cholinergic neurons, choline acetyltransferase and the vesicular acetylcholine transporter, and (3) examined muscarinic receptors in the paracervical ganglia using autoradiography and a radiolabeled agonist. Most ganglionic neurons were choline acetyltransferase- and vesicular acetylcholine transporter-immunoreactive and were apposed by choline acetyltransferase/vesicular acetylcholine transporter-immunoreactive terminals. Retrograde tracing showed that some cholinergic neurons projected axons to the uterus. These nerves formed moderately dense plexuses in the myometrium, cervical smooth muscle and microarterial system of the uterine horns and cervix. Finally, the paracervical ganglia contain muscarinic receptors. These results clearly reveal the cholinergic innervation of the uterus and cervix, a source of these nerves, and demonstrate the muscarinic receptor content of the paracervical ganglia. Cholinergic nerves could play significant roles in the control of uterine myometrium and vasculature.  相似文献   

9.
A hypothetical mechanism of the basal ganglia involvement in the occurrence of paradoxical sleep dreams and rapid eye movements is proposed. According to this mechanism, paradoxical sleep is provided by facilitation of activation of cholinergic neurons in the pedunculopontine nucleus as a result of suppression of their inhibition from the output basal ganglia nuclei. This disinhibition is promoted by activation of dopaminergic cells by pedunculopontine neurons, subsequent rise in dopamine concentration in the input basal ganglia structure. striatum, and modulation of the efficacy of cortico-striatal inputs. In the absence of signals from retina, a disinhibition of neurons in the pedunculopontine nucleus and superior colliculus allows them to excite neurons in the lateral geniculate body and other thalamic nuclei projecting to the primary and higher visual cortical areas, prefrontal cortex and back into the striatum. Dreams as visual images and "motor hallucinations" are the result of an increase in activity of definitely selected groups of thalamic and neocortical neurons. This selection is caused by modifiable action of dopamine on long-term changes in the efficacy of synaptic transmission during circulation of signals in closed interconnected loops, each of which includes one of the visual cortical areas (motor cortex), one of the thalamic nuclei, limbic and one of the visual areas (motor area) of the basal ganglia. pedunculopontine nucleus, and superior colliculus. Simultaneous modification and modulation of synapses in diverse units of neuronal loops is provided by PGO waves. Disinhibition of superioir colliculus neurons and their excitation by pedunculopontine nucleus lead to an appearance of rapid eye movements during paradoxical sleep.  相似文献   

10.
Fast blue (FB), rhodamine microspheres (RH), horseradish peroxidase (HRP), and wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) were used as retrograde tracers to study the innervation of the rat superficial pineal gland (SP). One of the tracers was injected into the gland of each animal. All four retrograde tracers injected into the gland always labeled neurons in the superior cervical ganglia (SCG). No retrograde labeling was ever seen in the suprachiasmatic nuclei, paraventricular hypothalamic nuclei, lateral hypothalamus, habenular nuclei, amygdalar nuclei, or superior salivatory nuclei. Retrograde labeling was seen in the anterior hypothalamic nuclei, anterior thalamic nuclei, lateral geniculate bodies, and midbrain tectal structures when a tracer spread from the injection site to the overlying cortex, tectum, or commissures. Control studies included injection of tracer into the subarachnoid space around the SP or into structures adjacent to the SP. Only the injection of FB or WGA-HRP into the subarachnoid space labeled neurons in the SCG. This labeling was probably due to the spread of tracer to the choroid plexus. These results agree with recent work confirming the existence of a direct projection of the SCG into the interstitium around pinealocytes. The evidence does not substantiate an innervation originating in the habenular nuclei; the superior salivatory nuclei; or any other diencephalic, midbrain, pontine, or medullary structure.  相似文献   

11.
Summary The neuronal subpopulations in the cat stellate, lower lumbar and sacral sympathetic ganglia were studied with regard to the cellular distribution of immunoreactivity to tyrosine hydroxylase (TH), acetylcholinesterase (AChE) and various neuronal peptides. Coexistence of neuropeptide Y (NPY)- and galanin (GAL)-like immunoreactivity (LI) was found in a high proportion of the neuronal cell bodies; these cells also contained immunoreactivity to TH, confirming their presumably noradrenergic nature. Some TH- and GAL-immunoreactive principal ganglion cells lacked NPY-LI. Two populations (scattered and clustered) of vasoactive intestinal polypeptide (VIP)- and peptide histidine isoleucine (PHI)-positive cell bodies were found in the sympathetic ganglia studied. The scattered VIP/PHI neurons also contained AChE-LI, calcitonin gene-related peptide (CGRP)-and, following culture, substance P (SP)-LI. The clustered type only contained AChE-LI. In the submandibular and sphenopalatine ganglia, neurons were AChE- and VIP/ PHI-immunoreactive but lacked CGRP- and SP-LI. Many GAL- and occasional TH-positive neurons were found in these ganglia. In the spinal ganglia, single NPY-immunoreactive sensory neuronal cells were observed, in addition to CGRP- and SP-positive neurons. The present results show that there are at least two populations of sympathetic cholinergic neurons in the cat. Retrograde tracing experiments indicate that the scattered type of cholinergic neurons contains four vasodilator peptides (VIP, PHI, CGRP, SP) and provides an important input to sweat glands, whereas the clustered type (containing VIP and PHI) mainly innervates blood vessels in muscles.  相似文献   

12.
The ultrastructural localization of AChE has been studied in the optic tectum of the goldfish after unilateral eye ablation. 1 or 4 months after the operation the patterns of enzyme localization were essentially the same in the normal and affected optic tectum, despite structural modifications caused by the degeneration of retinal terminals and dendritic atrophy of some tectal neurons. The results are discussed in relation to the different hypotheses put forward concerning possible cholinergic mechanisms in the optic tectum of teleosts.  相似文献   

13.
Estrogen replacement in postmenopausal women may help prevent or delay development of Alzheimer's disease. Because loss of basal forebrain cholinergic neurons with reductions in choline acetyltransferase (ChAT) concentration are associated with Alzheimer's disease, we investigated the effect of estradiol (E(2)) and J 861, a non-feminizing estrogen, on cholinergic neurons in the basal forebrain. Ovariectomized rats received E(2), J 861 or vehicle, and basal forebrain sections through the substantia innominata, medial septum, and nucleus of the diagonal band were immunostained for ChAT. ChAT-immunoreactive cells in the basal forebrain were significantly reduced in the ovariectomized rats compared to intact rats, but those ovariectomized rats receiving estrogen replacement with E(2) and J 861 had near normal levels of ChAT-positive neurons. While retrograde tracing experiments with fluorogold injected into the prefrontal cortex showed no significant differences in the number of fluorogold-labeled cells among the groups, ChAT-immunoreactive cells and double-labeled cells were significantly lower in OVX rats than in intact and E(2) rats. Some substantia innominata cells in the J 861 rats were ChAT/estrogen receptor alpha-positive. These results suggest that E(2) and J 861 have positive effects on cholinergic neurons that project from the basal nucleus to the forebrain cortex.  相似文献   

14.
Sympathetic ganglia consist of noradrenergic and cholinergic neurons. The cholinergic marker protein vesicular acetylcholine transporter (VAChT) and the neuropeptide vasoactive intestinal peptide (VIP), co-expressed in mature cholinergic sympathetic neurons, are first detectable during embryonic development of rat sympathetic ganglia. However, the subpopulation of cholinergic sympathetic neurons which innervates sweat glands in mammalian footpads starts to express VAChT and VIP during the first postnatal weeks, under the influence of sweat gland-derived signals. In vitro evidence suggests that the sweat gland-derived cholinergic differentiation factor belongs to a group of neuropoietic cytokines, including LIF, CNTF and CT-1, that act through a LIFRbeta-containing cytokine receptor. To investigate whether the embryonic expression of cholinergic properties is elicited by a related cytokine, the expression of VAChT and VIP was analyzed in stellate ganglia of mice deficient for the cytokine receptor subunits LIFRbeta or CNTFRalpha. The density of VAChT- and VIP-immunoreactive cells in stellate ganglia of new-born animals was not different in LIFRbeta(-/-) and CNTFRalpha(-/-) ganglia as compared to ganglia from wild-type mice. These results demonstrate that the early, embryonic expression of VAChT and VIP is not induced by cytokines acting through LIFRbeta- or CNTFRalpha-containing receptors.  相似文献   

15.
To identify sensory and motor neurons associated with the sciatic nerve in adult mice, three methods for applying fluorescent tracers (Fluorogold and Dil) were investigated: direct application, intraneural injection and impregnation of a sectioned nerve in a silicone chamber. Most accurate localization of the neurons on the dorsal root ganglia and spinal cord was accomplished by introducing the proximal stump of a transected sciatic nerve into a silicone chamber, filled with tracers and then decalcifying the tissue. Fluorogold was an effective tracing agent, in contrast to Dil, which was not. In addition to associations with cephalic ganglia L4, L5 and L6, as seen in rats, contributory neurons to the sciatic nerve were located in other ganglia in the mouse. These findings show that the silicone chamber-tissue decalcification technique is a viable tool for obtaining comparative neuroanatomical information in the mouse model.  相似文献   

16.
In the rabbit pineal gland two types of postganglionic nerve endings were found which are characterized by the presence of small dense-core vesicles or small clear vesicles. Pharmacological and cytochemical experiments showed then to be noradrenergic and cholinergic, respectively. Both types were often present in the same nerve bundle, occasionally in close opposition. Intrapineal neurons were only rarely observed. They showed cholinergic synapses on their perikaryon and dendrites as well as noradrenergic axo-dendritic close contacts. Bilateral extirpation of the superior cervical ganglia revealed the postganglionic sympathetic origin of the pineal noradrenergic nerve fibres. Moreover, it appeared that these ganglia are hardly, if at all, involved in the pathway of pineal cholinergic innervation. The results obtained from lesions of both facial nerves, taken together with the results reported in the literature, led to the conclusion that the postganglionic cholinergic nerve fibers in the pineal are of parasympathetic origin. A model for the sympathetic and parasympathetic pineal innervation is proposed.  相似文献   

17.
To study how the basal ganglia can control movement in birds, we have reinvestigated the connections of the pigeon dorsal pallidum. Our results indicate that avian basal ganglia appear to control movement through major projections to several premotor pretectal and tegmental centres which innervate the tectum, and through a minor projection to a possible motor thalamic centre which innervates the Wulst. For such control, separate striatopallidal output circuits appear to exist in birds that are remarkably similar to those described in mammals, suggesting that avian and mammalian basal ganglia may control movement through similar mechanisms, and that the morphological substrate for such control evolved earlier than previously thought.  相似文献   

18.
Kotsiuba EP 《Tsitologiia》2007,49(1):48-54
The presence of NADPH-diaphorase and choline acetyltransferase (ChAT) in all ganglia of the Mactra sulcatoria was demonstrated by histochemical and electron histochemical methods. Pecularities of cholinergic and nitrergic neurons localization were revealed in nervous ganglia, and their relative content there was estimated. It was established that in reaction to ChAT only large neurons were marked. Ultrastructural localization of NADPH-diaphorase and ChAT was determined in neurons and neuropile. The data obtained testify that NADPH-diaphorase and ChAT are located in different types of nervous cells. The opportunity of functional cooperation in activity of cholinergic and nitrergic systems in mollusks is discussed.  相似文献   

19.
Abstract— The concentration of muscarinic receptors has been measured in 22 areas of the dog nervous system by measuring the atropine-sensitive uptake of tritium-labelled propylbenzilylcholine mustard. The highest concentration of receptor was found in the caudate nucleus, intermediate concentrations were found in five areas of cerebral cortex, the other basal ganglia and the superior colliculus. Significant concentrations were found in the corpus callosum and subcortical white matter, and are believed to be on axons derived from cholinoceptive neurons. The results are discussed in relation to other evidence concerning cholinergic transmission in the nervous system.  相似文献   

20.
A technique is described by which neurons from mouse dorsal root ganglia can be dispersed in single-cell suspensions suitable for quantitative cytochemical analyses. The neurons were intact as controlled by trypan blue exclusion test, and the cell size distribution of the dispersed neurons corresponded to that of untreated, intact ganglia. Horseradish peroxidase and Evans blue applied to cut sciatic nerve, were transferred by somatopetal intra-axonal transport and accumulated in corresponding dorsal root ganglia neurons. The tracers were retained during the preparation of cell suspensions. The accumulation of the fluorescent tracer Evans blue was quantitated by cytofluorometric measurements on individual neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号