首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

2.
The complexes trans-[ReL2(dppe)2]BF4 (I, L = CO, CNR with R = Me,But, C6H4OMe-4, C6H4Me-4, C6H4Cl-4 and C6H3Cl2-2,6) were prepared from the reaction of the parent dinitrogen complex trans-[ReCl(N2)(dppe)2] with the appropriate ligand, in thf and in the presence of TlBF4.Their redox properties were studied by cyclic voltammetry at a Pt electrode in [Bu4N][BF4]/thf or acetonitrile; they undergo a one-electron reversible oxidation and the observed EOX12 values were applied to test the validity of a proposed general expression —derived from the electrochemical ligand (PL) and 16-electron metal site (Es, β) parameters [6]— to estimate EOX12 for 18-electron octahedral complexes of the type [M′sL2] with a square planar 14-electron metal centre {M′s}. Es and β parameters were also estimated for the auxilliary {ReL(dppe)2}+ (L = CO or CNR) centres.  相似文献   

3.
Reaction of tetrathiafulvalene carboxylic acid (TTFCO2H) with paddlewheel dirhodium complex Rh2(ButCO2)4 yielded TTFCO2-bridged complexes Rh2(ButCO2)3(TTFCO2) (1) and cis- and trans-Rh2(ButCO2)2(TTFCO2)2 (cis- and trans-2). Their triethylamine adducts [1(NEt3)2] and cis-[2(NEt3)2] were purified and isolated with chromatographic separation, and characterized with single crystal X-ray analysis. Trans-[2(NEt3)2] is not completely separated from a mixture of cis- and trans-[2(NEt3)2], but its single crystals were obtained from a solution of the mixture. A three-step quasi-reversible oxidation process was observed for 1 in MeCN. The first two steps correspond to the oxidation of the TTFCO2 moiety and the last one is the oxidation of the Rh2 core. The oxidation of cis-2 is observed as a two-step process with very similar E1/2 values to those of the first two processes for 1. Both 1+ and cis-22+ in MeCN at room temperature show isotropic ESR spectra with a g value of 2.008 and aH = 0.135 mT for two equivalent H atoms and aH = 0.068 mT for one H atom. The redox and ESR data of cis-2 suggest that the intramolecular interaction between the TTF moieties is very small.  相似文献   

4.
Base-assisted reduction of [Ru(CO)3Cl2]2 in the presence of NP-Me2 (2,7-dimethyl-1,8-naphthyridine) in thf provides an unsupported diruthenium(I) complex [Ru2(CO)4Cl2(NP-Me2)2] (1). Two NP-Me2 and four carbonyls bind at equatorial positions and two chlorides occupy sites trans to the Ru-Ru single bond. Reaction of [Ru(CO)3Cl2]2, TlOTf, KOH and NP-Me2 in acetonitrile, in a sealed container, affords a bicarbonate bridged diruthenium(I) complex [Ru2(CO)2(μ-CO)2(μ-O2COH)(NP-Me2)2](OTf) (2). The in situ generated CO2 is the source for bicarbonate under basic reaction medium. Isolation of 2 validates the decarboxylation step in the base-assisted reduction of [RuII(CO)3Cl2]2 → [RuI2(CO)4]2+.  相似文献   

5.
The reaction of [60]fullerene with Me3SiCH2MgCl in 1,2-Cl2C6H4/THF (1/1) under dry air afforded a bis-alkyl adduct, C60(CH2SiMe3)2 (1), in 54% yield. Treatment of 1 with Me3SiCH2MgCl in THF under argon then afforded a trialkyl[60]fullerene, C60(CH2SiMe3)3H (2), in 37% yield. Further treatment of 2 with KOtBu gave a potassium salt, [K(thf)n][C60(CH2SiMe3)3] (3), which was then converted to a Cs-symmetric Rh(I) complex, Rh[η5-C60(CH2SiMe3)3](1,5-cyclooctadiene) (4), in 91% yield.  相似文献   

6.
In quest of complexes having [MN3S2] cores in the monomeric form and trans-thiolate donor atoms, the new pentadentate thiolate amine pytBuN2H2S2-H2 [] has been synthesized.The template condensation reaction of bis(2-mercapto-3,5-di-tert-butylaniline)zinc (II)[Zn(tBu2ma)2] and pyridine-2,6-dicarbaldehyde in methanol at 40 °C leads to the formation of imine zinc complex [Zn(pytBuN2S2)] (7), which is very unstable and decomposes to give thiazole 5. However, if the template condensation is followed by in situ reduction with an excess of NaBH4, the stable saturated amine complex [Zn(pytBuN2H2S2)] (8) is formed. Demetallation of zinc complex 8 under acidic conditions leads to the formation of the desired dithiolate pytBuN2H2S2-H2 ligand (9).  相似文献   

7.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

8.
Reaction of [Mn(NCMe)3(CO)3][PF6] with Li3[7-NHBut-nido-7-CB10H10] in THF (THF = tetrahydrofuran) affords the twelve-vertex manganacarborane dianion [1-NHBut-2,2,2-(CO)3-closo-2,1-MnCB10H10]2−, isolated as the bis-[N(PPh3)2]+ salt (5a). This species reacts with {Pt(dppe)}2+ (dppe = Ph2PCH2CH2PPh2) to afford the bimetallic complex [1-NH2But-2,3-{Pt(dppe)}-2,2,2-(CO)3-closo-2,1-MnCB10H9] (7) which has an Mn-Pt bond. In contrast, with {Cu(PPh3)}+ the anion of 5a yields a CuMnCu trimetallic compound [1-{NH(But)Cu(PPh3)}-2,3,7-{Cu(PPh3)}-3,7-(μ-H)2-2,2,2-(CO)3-closo-2,1-MnCB10H8] (8) in which one of the Cu centers is bonded to Mn, whilst the other is attached to the pendant NHBut group. Upon treatment with Ag+, compound 5a is oxidized giving the very unusual Mn(III)-carbonyl complex [1,2-μ-NHBut-2,2,2-(CO)3-closo-2,1-MnCB10H10] (9a) in which the carborane ligand formally acts as an eight-electron donor to manganese. The novel structural features of compounds 7, 8, and 9a have been confirmed by X-ray diffraction studies.  相似文献   

9.
The reaction of cis-[Os(CO)4Me2] with Me3NO in the THF or MeCN yields the complexes fac-[Os(CO)3(L)Me2] (where L = THF or MeCN). Whereas the THF complex is unstable and only characterised spectroscopically, fac-[Os(CO)3(MeCN)Me2] has been isolated as a white solid and fully characterized by both analytical and spectroscopic methods. These complexes fac-[Os(CO)3(L)Me2] are shown to be useful intermediates. Thus, reaction with PPh3 gives fac-[Os(CO)3(PPh3)Me2] in good yield.Reactions of fac-[Os(CO)3(L)Me2] (L = CO or MeCN) with CPh3PF6 or B(C6F5)3 have been investigated. Whereas cis-[Os(CO)4Me2] showed no reaction with either CPh3PF6 or B(C6F5)3, the reaction of fac-[Os(CO)3(MeCN)Me2] with CPh3PF6 in CH2Cl2 occurred over 16 h at room temperature to give an unstable cationic product and CPh3Me. The reaction was monitored by both IR and NMR spectroscopies. When this reaction of fac-[Os(CO)3(MeCN)Me2] was carried out in the presence of a trapping ligand such as MeCN, the stable cationic product [Os(CO)3(MeCN)2Me]+ could be isolated and identified spectroscopically.  相似文献   

10.
The reaction of the chelating P,N ligand RNC(But)CH(R)PPh2 (R = SiMe3) (1) with CuCl and CuCl2 (probably by way of reduction to Cu(I) by the phosphine ligand) or Cu(NCCH3)4ClO4 yielded the dimeric 1:1 complex [Cu{PPh2CH(R)C(But)NR}Cl]2 (2) or the monomeric 2:1 complex [Cu{PPh2CH(R)C(But)NR}2]ClO4 (3), respectively. The presence of trace amounts of water during the reaction resulted in the successive cleavage of the two trimethylsilyl groups of the ligand and the formation of the monomeric chelate complexes [Cu{PPh2CH(R)C(But)NH}2]ClO4 (4) and [Cu{PPh2CH2C(But)NH}2]ClO4 (5). Oxidation of 5 by atmospheric oxygen led to small quantities of the blue Cu(II) complex [Cu{(O)PPh2CH2C(But)NH}2](ClO4)2 (6). The dimeric gold complexes [Au{PPh2CH2C(But)NH}]2X2 (X = BF4, ClO4) (7) were similarly obtained from the previously described Au{PPh2CH(R)C(But)NR}Cl by replacing the covalently bound chlorine with the weakly coordinating anions in the presence of small quantities of water. The solution and solid state structures (except 5) of all complexes were determined by NMR spectroscopy and X-ray crystallography.  相似文献   

11.
Trirutheniumdodecacarbonyl (Ru3(CO)12) reacts with 2-hydroxy-6-methylpyridine and with 2-hydroxy-5,6,7,8-tetrahydroquinoline in toluene to form centrosymmetric tetranuclear complexes of the type [Ru(η2, μ-L)(CO)23-L)Ru(CO)2]2, where L is the respective (N,O)-pyridonate ligand (2 and 3). The structures of these complexes, which are almost insoluble in all common solvents, could be determined by single-crystal X-ray diffraction. Reaction of Ru3(CO)12 with 2-hydroxy-4,6-diphenylpyridine in methanol includes ortho-metallation at the phenyl ring, furnishing the dinuclear complex [Ru(κ2N,C-L)(CO)2(μ-OCH3)2Ru(CO)22N,C-L)] (4), where L = (2-(6-hydroxy-4-phenylpyridin-2-yl)phenyl), according to an X-ray crystal structure determination.  相似文献   

12.
The new trans-hyponitrite derivative complex [Ru2(CO)4(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)] (2, dppm = Ph2PCH2PPh2) was prepared by deprotonation of [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)][BF4] (1) with the base DBU (1.8-diazabicyclo[5.4.0]undec-7-ene). The latter complex salt has been obtained in an improved synthesis starting from the trans-hyponitrite complex [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNO)]. Compound 2 has been characterized by spectroscopic methods as well as by X-ray diffraction and represents the first neutral complex bearing a deprotonated monoester of the hyponitrous acid as the bridging ligand.  相似文献   

13.
Mo(CO)4(LL) complexes, where LL = polypyridyl ligands such as 2,2′-bipyridine and 1,10-phenanthroline, undergo quasi-reversible, one-electron oxidations in methylene chloride yielding the corresponding radical cations, [Mo(CO)4(LL)]+. These electrogenerated species undergo rapid ligand substitution in the presence of acetonitrile, yielding [Mo(CO)3(LL)(CH3CN)]+; rate constants for these substitutions were measured using chronocoulometry and were found to be influenced by the steric and electronic properties of the polypyridyl ligands. [Mo(CO)3(LL)(CH3CN)]+ radical cations, which could also be generated by reversible oxidation of Mo(CO)3(LL)(CH3CN) in acetonitrile, can be irreversibly oxidized yielding [Mo(CO)3(LL)(CH3CN)2]2+ after coordination by an additional acetonitrile. Infrared spectroelectrochemical experiments indicate the radical cations undergo ligand-induced net disproportionations that follow first-order kinetics in acetonitrile, ultimately yielding the corresponding Mo(CO)4(LL) and [Mo(CO)2(LL)(CH3CN)3]2+ species. Rate constants for the net disproportionation of [Mo(CO)3(LL)(CH3CN)]+ and the carbonyl substitution reaction of [Mo(CO)3(LL)(CH3CN)2]2+ were measured. Thin-layer bulk oxidation studies also provided infrared characterization data of [Mo(CO)4(ncp)]+ (ncp = neocuproine), [Mo(CO)3(LL)(CH3CN)]+, [Mo(CO)3(LL)(CH3CN)2]2+ and [Mo(CO)2(LL)(CH3CN)3]2+ complexes.  相似文献   

14.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

15.
The reactions of the triangulo-cluster [Pt3(μ-CO)3(PtBu3)3] with activated olefins and alkynes have been examined under various conditions. At low temperature, cluster fragmentation occurs yielding the Pt(0) complexes [Pt(CO)(PtBu3)(olefin)] (olefin = maleic anhydride and maleimide), while di(tert-butyl)acetylenedicarboxilate reacts quantitatively giving the dinuclear Pt(0) complex [Pt2(CO)2(PtBu3)2(μ-η22-tBuO2CCCCO2tBu)]. At higher temperature and in the presence of alkyne in large excess, the latter dimer converts quantitatively to the monomers [Pt(CO)(PtBu3)(alkyne)] (alkyne = CF3CCCF3 and tBuO2CCCCO2tBu). The stereochemistry of these complexes has been established by NMR and IR measurements. The structure of [Pt(CO)(PtBu3)(CF3CCCF3)] was confirmed by X-ray diffraction analysis.  相似文献   

16.
Reaction of sodium picolinate with FeIII oxo-centered carboxylate triangles in MeCN in the presence of PPh4Cl yields (PPh4)[Fe4O2(O2CR)7(pic)2] (R = Ph (1), But (2)). Omitting the phosphonium cation produces [Fe8Na4O4(O2CPh)16(pic)4(H2O)4] (3), which contains two Fe4Na2 units bridged by two picolinate ligands. X-ray crystal structures of 1 and 3 are reported.Voltammetric profiles in MeCN show four one-electron reduction steps for complexes 1 and 2. Variable-temperature magnetic susceptibility measurements in polycrystalline samples of 1 and 3 reveal strong antiferromagnetic couplings leading to = 0 ground states.  相似文献   

17.
Several clusters complexes of composition [Pt42-CO)5L4] have been synthesized and characterized, using 31P and 195Pt NMR. L = PEt3, PMe2Ph, PMePh2, PEt2But. The molecular structure of a new monoclinic modification of the PMe2Ph derivative has been determined: space group P21/n with a = 19.698(4), b = 10.9440(20), and c = 21.360(6) Å, β = 112.432(18)°, Z = 4. Using 4751 reflections measured at 290 ± 1 K on a four-circle diffractometer the structure has been refined to R = 0.0846. The molecule has no imposed symmetry, but the central Pt4(CO)5P4 core has the approximate C2v architecture established for the previously known orthorhombic modification. The Pt4 unit is thus a highly distorted, edge-opened (3.3347 Å) tetrahedron, with five edge-bridging carbonyl and four terminal phosphine ligands. In contrast to the crystallographic results 31P and 195Pt NMR spectra reveal equivalent 31P and 195Pt spins, which can be interpreted in terms of a tetrahedral arrangement of platinum atoms. It is suggested that this equivalence arises from time-averaging of all possible isomeric edge-opened tetrahedra.  相似文献   

18.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

19.
The reaction of cis- or trans-[Ru(CNtBu)4(CN)2] with Fe(III) compounds leads to the formation of molecular squares of the general formula cyc-[Ru(CN-tBu)4(CN)2FeX3]2 or one-dimensional coordination polymers [Ru(CN-tBu)4(CN)2FeX3]n, respectively. Temperature dependent susceptibility measurements indicate that the magnetic properties of the coordination compounds are determined by their molecular structure. Of particular importance is the local symmetry at the iron(III) center which is related to the coordinating anion. The magnetic properties are best described in terms of weak antiferromagnetic interactions between the iron centers for the molecular squares as well as the coordination polymer with X = NO3 and as weak ferromagnetic interactions in case of the linear coordination polymer with X = Cl. For all compounds zero field splitting at low temperatures has to be taken into account.  相似文献   

20.
Short-bite aminobis(phosphonite) containing olefinic functionalities, PhN{P(OC6H3(OMe-o)(C3H5-p))2}2 (1) was synthesized by reacting PhN(PCl2)2 with eugenol in the presence of triethylamine. The ligand 1 acts as a bidentate chelating ligand toward metal complexes [M(CO)4(C5H10NH)2] forming [M(CO)42-PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (M = Mo, 2; W, 3). The reaction between 1 and [CpFe(CO)2]2 leads to the cleavage of one of the P-N bonds due to the metal assisted hydrolysis to give a mononuclear complex [CpFe(CO){P(O)(OC6H3(OMe-o)(C3H5-p))2}{PhN(H)(P(OC6H3(OMe-o)(C3H5-p))2)}] (4). Treatment of 1 with gold(I) derivative, [AuCl(SMe2)] resulted in the formation of a dinuclear complex, [(AuCl)2{PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (5) with a Au···Au distance of 3.118(2) Å indicating the possibility of aurophilic interactions. An equimolar reaction between 1 and [Ru(η6-p-cymene)Cl2]2 afforded a tri-chloro-bridged bimetallic complex [(η6-p-cymene)Ru(μ-Cl)3Ru{PhN(P(OC6H3(OMe-o)(C3H5-p))2)2}Cl] (6). The crystal structures of 1-3 and 5 were established by single crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号