首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

2.
Assembly of N,N′-bis(4-picolinoyl)hydrazine (H2L) with cadmium nitrate in the presence of dicyanamide anion (dca) affords a new coordination polymer {[Cd(HL)(dca)] · (H2O)0.5}n (1), in which the [Cd(HL)]n layers are extended by dca bridges to result in a three-dimensional (3-D) coordination framework. The network structure of 1 has unusual (3,5)-connectivity and represents a new type of (4·62)(4·66·83) topology. Two such identical and complementary networks are entangled to generate a twofold parallel interpenetrating supramolecular lattice.  相似文献   

3.
A chiral Schiff base N-(S)-2-(6-methoxylnaphthyl)-propanoyl-N′-(2-hydroxylbenzylidene)hydrazine (H2L) has been synthesized. Reaction of H2L with Cu(OAc)2 · H2O led to the formation of a metal complex {[CuL] · H2O · 2DMF} (1). In complex 1, the potential dinegative tridentate L2− ligand acting as tetradentate bridging ligand coordinate to two metal ions so as to form a novel infinite metal-organic coordination chain structure. The enantiomerically pure ligand H2L presents two different sets of signals in the 1H NMR spectrum either in chloroform solution or in dimethylsulfoxide solution, showing the presence of both (E) and (Z) isomers. The X-ray structural investigations of H2L revealed that it is the fully extended E-configuration in the solid state.  相似文献   

4.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

5.
Two new ligand-containing histidine based on N,N′,N″-tris(N-benzyl-l-histidinyl)tri(2-aminoethyl)amine, L1, namely N,N′,N″-tris[(1S)-2-methoxy-2-oxy-1-(1-benzylimidazol-4-ylmethyl)]nitrilotriacetamide L2 and N,N′,N″-tris{N-benzyl-N-[N-benzyl-N-(N-benzyl-l-histidinyl)-l-histidinyl]-l-histidinyl}tri(2-aminoethyl)amine L3 were prepared. Zinc(II) binding studies by these ligand systems were analyzed by means of potentiometric and 1H NMR titrations in aqueous methanol (33 % v/v). Subsequently their zinc(II) complexes [L1Zn(H2O)](ClO4)2·HClO4 (1), [L2Zn(OH2)](ClO4)2·H2O (2), and ([L3Zn3(H2O)3](ClO4)6·3HClO4·5H2O (3), respectively were synthesized and characterized. The reactivity of the trinuclear complex (3) toward the hydrolysis of the toxic organophosphate parathion was investigated and compared with that of the mononuclear reference complex (1). From the pH dependence of the apparent rate constants, and the deprotonation constant (pKa) of the coordinated water molecules in (1), the active species were confirmed to be {[HL1Zn(OH)]2+/[L1Zn(H2O)]2+} at pH 8.5. The trizinc complex (3) effects hydrolysis of parathion, with three times rate enhancement over the mononuclear (1), indicating that cooperative action of the three zinc centers is limited.  相似文献   

6.
Four new hetero-bimetallic Co3+-Na+ and Co3+-K+ coordination polymers having the molecular formulae [Na(H2O)Co(L)(N3)3]n (1), [Na2Co(L)(N3)3(H2O)5][Co(L)(N3)3] (2), K[Co(L)(NCS)3]·H2O (3) and K[Co(L)2][Co(NCS)4]·0.5H2O (4), were synthesized. Compounds 1-4 were characterized by single crystal X-ray diffraction, IR, UV-Vis, and thermogravimetric methods. These bimetallic systems have EE, EO azide bridge (1, 2) as well as bent (1, 2, 3) and linear (1, 4) aquo bridges. Important features observed among them were: a Z-shaped and diamond-shaped Co2Na2 clusters in 1, a centrosymmetric double ladder like polymer based on Na4 cluster in 2, and a linear KOK core having paddle-wheel structure in 4.  相似文献   

7.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

8.
The reactions of salicylaldehyde oxime (H2salox) with CuII precursors yielded the known complexes [Cu(Hsalox)2] (1) and [Cu(Hsalox)2]n (2), as well as complexes [Cu3(salox)(L1)(L2)]·MeCN (3·MeCN), [CuCl(L1)] (4) and [Cu2Na(O2CMe)5(HO2CMe)]n (5), where L1 = o-O-C6H4-CHNO-C(CH3)NH and L23− = o-O-C6H4-CHNO-C(o-O-C6H4)N. L1 was formed in situ via the nucleophilic addition of the oximato O-atom of salox2− to the unsaturated nitrile group of the MeCN reaction solvent. L23− is also formed in situ probably through the nucleophilic attack of the oximato O-atom to the unsaturated nitrile group of salicylnitrile; the latter, although not directly added to the reaction mixture, can be produced via the dehydration of salox2−. Compounds 1 and 2 contain Hsalox bound to the metal center in two different coordination modes; they both contain the same mononuclear unit, however a 2D network is generated in 2 due to a relatively long Cu-Ooximato bond. Compound 3 contains three different ligands, i.e. salox2−, L1 and L23−, which act as μ32OO′:κN, κONN′ and μ32O2NO′:κN′, respectively, whereas 4 consists of a square planar CuII atom bound to a κONN′ L1 and a chloride ion. Compound 5 consists of dinuclear [Cu2(O2CMe)5(HO2CMe)] units and Na+ ions assembled into an overall 3D network structure. Magnetic susceptibility measurements from polycrystalline samples of 2 and 5 gave best-fit parameters J = +0.36 cm−1 (H = −J?i?j) and J = −360 cm−1, zj = +20 cm−1 (H = −J?i?j − zJ〈Sz?z), respectively.  相似文献   

9.
The three complexes [CoIIIL1Cl] (1), [CoIIIL2]+·ClO4 (2+·ClO4), and [CuIIH2L2]2+·2ClO4 (H232+·2ClO4) [where H2L1 = N,N′-dimethyl-N,N′-bis(2-hydroxy-3,5-di-tert-butylbenzyl)ethylenediamine, H2L2 = N,N′-bis(2-pyridylmethyl)-N,N′-bis(2-hydroxy-3,5-di-tert-butylbenzyl)ethylenediamine] have been prepared. The bis-phenolate and bis-phenol complexes, 2+ and H232+ respectively, have been characterized by X-ray diffraction, showing a metal ion within an elongated octahedral geometry. 1-2 exhibit in their cyclic voltammetry curves two anodic reversible waves attributed to the successive oxidation of the phenolates into phenoxyl radicals. The cobalt radical species (1)+, (2)2+, and (2)3+ have been characterized by combined UV-Vis and EPR spectroscopies. In the presence of one equivalent of base, one phenolic arm of H232+ is deprotonated and coordinates the metal. The resulting complex (H3+) exhibits a single reversible redox wave at ca. 0.3 V. The electrochemically generated oxidized species is EPR silent and exhibits the typical features of a radical compound, with absorption bands at 411 and 650 nm. The fully deprotonated complex 3 is obtained by addition of two equivalents of nBu4N+OH to H232+. It exhibits a new redox wave at a lower potential (−0.16 V), in addition to the wave at ca. 0.3 V. We assigned the former to the one-electron oxidation of the uncoordinated phenolate into an unstable phenoxyl radical.  相似文献   

10.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

11.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   

12.
A trinuclear copper(II) complex, [Cu3(2,5-pydc)2(Me5dien)2(BF4)2(H2O)2] · H2O 1, has been constructed from 2,5-pyridine-dicarboxylato bridges (2,5-pydc2−) and N,N,N′,N″,N″-pentamethyl-diethylenetriamine (Me5dien) acting as a blocking ligand. The copper ions, within the centrosymmetric trinuclear cations, are connected by two 2,5-pydc2− bridges, with an intramolecular Cu···Cu separation of 8.432 Å. The central copper ion exhibits an elongated octahedral geometry, with semicoordinated ions, while the terminal ones are pentacoordinated (distorted square-pyramidal geometry). The cryomagnetic investigation of 1 reveals an antiferromagnetic coupling of the copper(II) ions (J = −5.9 cm−1, H = −JSCu1SCu2 − JSCu2SCu1a).  相似文献   

13.
Using a non-planar tridentate ligand 2,6-bis(pyrazol-1-ylmethyl)pyridine (L5) two new coordination complexes [(L5)CoII(H2O)3]Cl2 (1) and [(L5)NiII(H2O)2Cl]Cl·H2O (2) have been synthesized and structurally characterized. Complex 1 has N3O3 distorted octahedral environment around CoII with coordination by L5 (two pyrazole and a pyridine nitrogen in a facial mode) and three water molecules. Complex 2 has N3O2Cl distorted octahedral geometry around NiII with meridional L5 coordination, two water molecules, and a Cl ion. Analysis of the crystal packing diagram reveals the involvement of solvent (water as metal-coordinated and as solvent of crystallization) and counteranion (Cl) to play significant roles in generating 1D chains, involving O-H···Cl, and O-H···O interactions.  相似文献   

14.
Six new bromothallate(III)-containing salts with different alkyl diammonium cations have been prepared from bromide containing solutions and studied by single-crystal X-ray crystallographic analyses. The N,N′-diethyl-N,N,N′,N′-tetramethyl-1,2-ethylenediammonium, N-methyl-1,3-propanediammonium, N,N,N′,N′-tetramethyl-1,3-propanediammonium and N,N,N′,N′-tetraethyl-1,2-ethylenediammonium cations yield complexes (I, II, III and IV, respectively) with the [TlBr5]2− anionic stoichiometry. For I and II, both complexes contain the [TlBr5]2− anion. In complex II, this appears as a distorted octahedron with one long Tl?Br2′ contact of 3.632(4) Å from an adjacent anion, thus completing the hexacoordination about an otherwise distorted square pyramid. On the other hand, for III and IV, both complexes contain a tetrahedral [TlBr4] anion together with an isolated, but hydrogen-bonded, Br anion. The 1,5-hexanediammonium complex (V) contains tetrahedral [TlBr4], slightly distorted octahedral [TlBr6]3− and Br anions. The asymmetric unit of the N,N-diethyl-1,3-propanediammonium salt (VI) contains one cation and half of each of a [TlBr4] and an axially compressed octahedral [TlBr6]3− anion. Extensive hydrogen-bonded networks exist in complexes II-VI. NH?Br hydrogen bonds generally have a significant influence on the nature of the anions present in species with the formal [TlBr5] stoichiometry.  相似文献   

15.
Reaction of [CuIIL⊂(H2O)] (H2L = N,N′-ethylenebis(3-ethoxysalicylaldimine)) with nickel(II) perchlorate in 1:1 ratio in acetone produces the trinuclear compound [(CuIIL)2NiII(H2O)2](ClO4)2 (1). On the other hand, on changing the solvent from acetone to methanol, reaction of the same reactants in same ratio produces the pentametallic compound [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)]·2MeOH (2A), which loses solvated methanol molecules immediately after its isolation to form [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)] (2B). Clearly, formation of 1 versus 2A and 2B is solvent dependent. Crystal structures of 1 and 2A have been determined. Interestingly, compound 2A is a [3 × 1 + 1 × 2] cocrystal. The cryomagnetic profiles of 1 and 2B indicate that the two pairs of copper(II)···nickel(II) ions in the trinuclear cores in both the complexes are coupled by almost identical moderate antiferromagnetic interaction (J = −22.8 cm−1 for 1 and −26.0 cm−1 for 2B).  相似文献   

16.
Three water-soluble dicobalt(III) complexes, [Co2L2(µ-OH)2](ClO4)2·5H2O (1), [Co2L2(µ-OH)2](ClO4)2·CH3OH·H2O(2); [Co2L2(µ-OH)2](ClO4)2·4H2O(3) (L = 1,4,7-triazacyclononane-N-acetate monoanion), were prepared to serve as nuclease mimics. The complexes were characterized by X-ray, IR and UV-vis spectroscopy as well as ESI-MS. Three complexes exhibit similar structures, just with different solvent molecules. The electrospray mass spectrum of 1 in solution indicates that dinuclear ion [Co2L2(µ-OH)2-H+] + (4) is the active species. In the absence of any reducing agent, the complexes cleave plasmid pBR322 DNA was performed and its hydrolytic mechanism was demonstrated with radical scavengers, anaerobic reaction and T4 ligase. The kinetic aspects of DNA cleavage under pseudo- or true-Michaelis-Menten conditions are also detailed, kinetic parameters (kcat, KM) were calculated to be 3.57 h− 1, 6.92 × 10− 4 M; 0.28 h− 1, 1.9 × 10− 5 M for 4, respectively.  相似文献   

17.
A new synthetic route to the known tripodal tetradentate N3O ligand L1 (HL1 = [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine) is reported. The related compounds HLn (n = 2, 3) were prepared by a similar procedure. Treatment of HLn (n = 1-3) with FeCl3·6H2O in hot methanol led to the mononuclear iron(III) complexes [Fe(Ln)Cl2] (1: n = 1, 2: n = 2, 3: n = 3). The solid-state structures of complexes 1 and 2 were determined by X-ray crystallography. [Fe(L1)Cl2] (1) showed effective nuclease activity in the presence of hydrogen peroxide, converting supercoiled plasmid DNA to its linear form.  相似文献   

18.
The self-assembly reaction of the flexible ligand 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) and Ag salts with BF4, SO42−, NO3 and ClO4 gives novel coordination polymers {[Ag(btre)2](BF4)}n (1), {[Ag2(btre)1.5(H2O)](SO4)·5H2O}n (2), {[Ag(btre)](NO3)·H2O}n (3) and {[Ag(btre)](ClO4)}n (4). The structure of 1 is a one-dimensional double chain through double bis-monodentate btre bridges. Compound 2 is a novel two-dimensional network containing the Ag4 unit node and μ4-btre building block. In 3 and 4, adjacent two silver(I) atoms are linked through four nitrogen atoms of two N1/N2 atoms of two btre ligands and form Ag2N4 6-membered rings and construct a one-dimensional chain. The chains extends through btre bridges in four different directions alternatively to construct a novel three-dimensional network. The luminescences of 1-4 were observed in the solid state at room temperature. Compounds 3 and 4 are inversely transfered by the anion exchange procedure.  相似文献   

19.
The template reaction between salicylaldehyde S-methyl-isothiosemicarbazone and 2-formylpyridine in presence of nickel(II) or copper(II) salts yields two new coordination compounds with general formula [NiL1]2(1) and [CuL2]2(2) (L1 = the dianionic (N1-salicylidene)(N4-(hydroxy(pyridin-2-yl)methyl) S-methyl-isothiosemicarbazide) ligand and L2 = the doubly deprotonated (N1-salicylidene)(N4-(picolinoyl) S-methyl-isothiosemicarbazide) ligand). In the complex 1, the formed L1 ligand appears as result of an addition reaction of the precursors, while for 2 a redox mechanism is implicated in the formation of L2. Despite the fact that the initial organic precursors are the same, the resulting ligands obtained in the template reaction are different. In 1, the Ni(II) metal ion adopts a square-planar geometry and the [NiL1] units are forming dimerized chains through weak Ni···Ni interactions (3.336 and 3.632 Å). In 2, the Cu(II) metal ions adopt a square-pyramidal geometry and form dinuclear species through weak Cu···O (phenoxo) interactions. The magnetic susceptibility measurements of the complexes reveal the diamagnetic nature of 1 as expected for a square planar Ni(II) complex and a paramagnetic behavior for 2 with weak intra-dimer antiferromagnetic interaction (J/kB = −2.1(1) K).  相似文献   

20.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号