首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A new polynuclear copper (II) complex, derived from the azido-bridging ligand and 2-aminopyrimidine, has been synthesized and its 3-D structure has been determined by X-ray diffraction methods at two different temperatures. The compound crystallizes in the triclinic system space group, with the central copper atom lying on an inversion centre. The crystal structure is built up by trinuclear units (each of them contains two double end-on azido bridges) linked through two azide ions in an end-to-end (EE) fashion, to yield the polymer chain [Cu3(ampym)21,1-N3)41,3-N3)2(dmf)2]n. Magnetic susceptibility measurement shows a ferromagnetic interaction above 30 K, whereas a weak anti-ferromagnetic interaction prevails in the range of 30-2 K.  相似文献   

2.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   

3.
Routes to the synthesis of the mixed sulfide-phenylthiolate complex [Pt2(μ-S)(μ-SPh)(PPh3)4]+ have been explored; reaction of [Pt2(μ-S)2(PPh3)4] with excess Ph2IBr proceeds readily to selectively produce this complex, which was structurally characterised as its PF6 salt. Reactions of [Pt2(μ-S)2(PPh3)4] with other potent arylating reagents (1-chloro-2,4-dinitrobenzene and 1,5-difluoro-2,4-dinitrobenzene) also produce the corresponding nitroaryl-thiolate complexes [Pt2(μ-S){μ-SC6H2(NO2)2X}(PPh3)4]+ (X = H, F). The complex [Pt2(μ-S)(μ-SPh)(PPh3)4]+ reacts with Me2SO4 to produce the mixed alkyl/aryl bis-thiolate complex [Pt2(μ-SMe)(μ-SPh)(PPh3)4]2+, but corresponding reactions with the nitroaryl-thiolate complexes are plagued by elimination of the nitroaryl group and formation of [Pt2(μ-SMe)2(PPh3)4]2+. [Pt2(μ-S)(μ-SPh)(PPh3)4]+ also reacts with Ph3PAuCl to give [Pt2(μ-SAuPPh3)(μ-SPh)(PPh3)4]2+.  相似文献   

4.
The reaction of [CpCr(CO)3]2 (Cp = η5-C5H5) (1) with an equivalent of Bz2S3 at ambient temperature gave [CpCr(CO)2]2S (3) [L.Y. Goh, T.W. Hambley, G.B. Robertson, Organometallics 6 (1987) 1051], novel complexes of [CpCr(CO)2(SBz)]2 (4) and together with [CpCr(SBz)]2S (5) as main products. Thermolytic studies showed that 4 underwent complete decarbonylation to give [CpCr(SBz)]2S (5). Final thermal decomposition of 3 and 5 eventually yielded Cp4Cr4S4 (6) (Goh et al., 1987) after prolonged reaction at 100 °C. However, the reaction of [CpCr(CO)2]2 (CrCr) (2) with Bz2S3 was much slower at ambient temperature which required 72 h to complete eventually yielding 3 and 5. All the products have been characterized by elemental and spectral analyses. 4 has been structurally determined.  相似文献   

5.
The room temperature reactions of RSH (R = Et, Ph) with (CO)3Mo(μ-dppm)2Ru(CO)3 (1) in toluene yield (CO)2Mo(μ-SR)(μ-CO)(μ-dppm)2Ru(H)(CO) [R = Et (3); Ph (4)], which are characterized by elemental analysis, 1H NMR and IR spectroscopies and, in the case of 3, by X-ray crystallography. The complexes contain a trans,trans-Mo(μ-dppm)2Ru unit with a bridging thiolate, a terminal hydride at the Ru, three terminal CO ligands (two at the Mo, and one at the Ru), and one semi-bridged CO closer to the Mo.  相似文献   

6.
Two novel tetranuclear compounds with an unprecedented mode of a hydrogenphosphato bridge, [Cu4(dpyam)443-HPO4)2(μ-X)2]2+ (in which dpyam = di-2-pyridylamine and X = Cl (1), Br (2)) have been synthesised and characterised structurally and magnetically. The Cu(II) ions in the structures each display a square-pyramidal geometry, with two tridentate hydrogenphosphato groups bridging four copper atoms in a μ43 coordination mode which is rarely found in hydrogenphosphate metal compounds. Each (different) pair of Cu(II) ions is additionally bridged by halide ions, with relatively long Cu-X distances (2.551(3)-2.604(3) Å for 1 and 2.707(1)-2.766(2) Å for 2) and subsequently also a small Cu-X-Cu angle (65.7(1)° and 65.1(1)° for 1 and 61.6(1)° and 62.4(1) for 2) and a large Cu-X-Cu angle (95.5(1)° and 96.5(1)° for 1 and 91.1(1)° and 92.6(1)° for 2). Cu?Cu distances in the tetranuclear units varies from 2.802(3) to 5.232(3) Å for 1 and from 2.834(1) to5.233(1) Å in 2. The lattice structures are stabilised by extensive intermolecular hydrogen bonds. The magnetic susceptibility measurements down to 5 K revealed a weak ferromagnetic interaction between the outer pairs of Cu(II) ions which vary from 22 to 46 cm−1 in 1 and 12 to 33 cm−1 in 2 and a moderately strong antiferromagnetic interaction between the inner Cu(II) ions of −79 cm−1 in 1 and −83 cm−1 in 2, via the Cu-O-P-O-Cu pathway.  相似文献   

7.
Reaction of [WVIS4]2− with ethane-1,2-dithiol edtH2 in the presence of the sulfide scavenger Cd2+ yielded the dinuclear tungstate syn-[{(edt)WV(O/S)}2(μ-S)2]2− (1), with the terminal S/O disordered over the two tungsten sites in the ratio 0.8:02. In the presence of thiocyanate, phosphine and CuI, the anionic cuboidal clusters of composition [{(SCN)3WV}2{CuI(PPh3)}23-S)4]2− (2) and (3, diphos = 1,2-bis(o-diphenylphosphinophenyl)ethane), and possibly via an intermediate [{(SCN)3WVS}2(μ-S)2]4−. The crystal and molecular structures of [Et4N]21, [Et4N]22 · H2O and [Et4N]23 · H2O have been determined.  相似文献   

8.
Photolysis of M2(CO)4(μ-S-t-Bu)2, where M = Rh or Ir, in Nujol matrices at ca. 90 K results in simple CO loss to form a tricarbonyl intermediate analogous to that observed for Rh2(CO)4(μ-Cl)2. Photolysis of the anions, [M(CO)2Cl2]1−, where M = Rh or Ir, in inert ionic matrices at ca. 90 K, results in CO-loss to form an intermediate analogous to that formed by Rh(CO)2(i-Pr2HN)Cl. Finally, photolysis of trans-Ir(CO)(PMe3)2Cl in a Nujol matrix at ca. 90 K gives rise to a new species whose carbonyl band is shifted slightly down in energy as has been observed for trans-Rh(CO)(PMe3)2Cl. In all cases the iridium compounds behave similarly to the rhodium species although the photon energy for iridium photochemistry is typically above that of the rhodium compounds.  相似文献   

9.
The single crystals of dichloro-bridged dinuclear Rh-Cp* complex with neutral Me2CO molecules, [Rh2(Cp*)2(μ-Cl)2(Me2CO)2](BF4)2 (Cp* = η5-C5Me5), was isolated and the structure was in first determined crystallographically.  相似文献   

10.
The reduction of ethanolic solutions of niobium pentachloride with zinc, followed by treatment with aqueous acids serves as a versatile entry into the aqueous solution chemistry of niobium. From the zinc-reduced solution, the major intermediate, Nb42-O)22-OC2H5)4Cl4(OC2H5)4(HOC2H5)4, was isolated and the crystal structure determined by X-ray crystallography. The complex crystallizes in the orthorhombic space group Pccn, with Z=4, a=21.0105(9), b=11.0387(5), c=19.1389(8), V=4438.9(3) Å3, Mr=1090.19,R1=0.0327 and wR2=0.0876. The structure revealed a centrosymmetric tetrameric Nb(IV) complex, consisting of a pair of edge-sharing bi-octahedral Nb22-OC2H5)4Cl2(OC2H5)2(HOC2H5)2 units that are joined by two axial oxo ligands. The Nb-Nb distance of 2.7458(3) Å is consistent with a single metal-metal bond.  相似文献   

11.
Some novel hydrido-anions of general formula [Ir4H(CO)9(μ-L-L)] (L-L = Ph2PCH(CH3)PPh2, Ph2P(CH2)2PPh2, Ph2P(CH2)3PPh2 and Ph2AsCH2AsPh2) have been obtained by the reaction of [Ir4(CO)10(μ-L-L)] with the base 1,8-diazabicyclo[5.4.0]undec-7-ene in wet dichloromethane. According to IR and 1H, 31P and 13C NMR data at low temperature, these anionic derivatives display a single conformation in solution: three edge-bridging COs around the triangular basal face and both the hydride and the bidentate ligands located in axial positions relative to this face. The structures of four compounds were established by X-ray diffraction studies, which confirmed the configuration proposed on the basis of spectroscopic data.  相似文献   

12.
The thermal reaction of Ru3(CO)12 with the biologically active acids acetyl salicylic acid (Aspirin), α-methyl-4-(isobutyl)phenylacetic acid (Ibuprofen) and 3α,7α,12α-trihydroxy-5β-cholanic acid (cholic acid) in refluxing tetrahydrofuran, followed by addition of triphenylphosphine, gives the dinuclear complexes Ru2(CO)4(OOCR)2(PPh3)2 (1: R = C6H4-2-OCOMe, 2: R = CHMe-C6H4-4-Bui, 3: C23H39O3). The single-crystal structural analysis of 1 and 2 reveals a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two phosphine ligands occupy the axial positions at the ruthenium atoms. However, chiral carbon atoms in the carboxylic acid undergo racemisation during the thermal reaction.  相似文献   

13.
Two trinuclear NiFe2 complexes Fe2(CO)63-S)2[Ni(Ph2PCH2)2NR] (R = n-Bu, 1; Ph, 2) containing an internal base were prepared as biomimetic models for the active sites of FeFe and NiFe hydrogenases. Treatment of complex Fe2(CO)63-S)2[Ni(Ph2PCH2)2N(n-Bu)] (1) with HOTf gave an N-protonated complex [Fe2(CO)63-S)2{Ni(Ph2PCH2)2NH(n-Bu)}][OTf] ([1H][OTf]). The structures of complexes 1, 2 and [1H][OTf] were determined by X-ray crystallography, which shows that the proton held by the N atom of [1H][OTf] lies in an equatorial position. Cyclic voltammograms of complexes 1 and [1H][OTf] were studied and compared with that of Fe2(CO)63-S)2[Ni(dppe)].  相似文献   

14.
Reaction of the metalloligand [Pt2(μ-S)2(PPh3)4] with the N-heterocyclic carbene (NHC) complexes IPrAuCl, IMesAuCl and IMesAgCl in methanol gave the first examples of metal adducts of [Pt2(μ-S)2(PPh3)4] that contain NHC ligands, namely [Pt2(μ-S)2(PPh3)4AuL]+ (L = IPr, IMes) and [Pt2(μ-S)2(PPh3)4AgIMes]+. The complexes were isolated as hexafluorophosphate salts. Reaction of [Pt2(μ-S)2(PPh3)4] with excess IPrAuCl in refluxing methanol yielded only the mono-adduct, in contrast to the behaviour with the gold(I) phosphine complex Ph3PAuCl, which undergoes double addition giving [Pt2(μ-SAuPPh3)2(PPh3)4]2+. The X-ray structure of [Pt2(μ-S)2(PPh3)4AuIPr]PF6 was determined and reveals that the ‘free’ sulfide is substantially sterically protected by the IPr ligand, accounting for the low reactivity towards addition of a second AgIPr+ moiety.  相似文献   

15.
Further studies have been carried out into the reactivity of [Pt2(μ-S)2(PPh3)4] towards a range of activated alkylating agents of the type RC(O)CH2X (R = organic moiety, e.g. phenyl, pyrenyl; X = Cl, Br). Alkylation of both sulfide centers is observed for PhC(O)CH2Br, 3-(bromoacetyl)coumarin [CouC(O)CH2Br], and 1-(bromoacetyl)pyrene [PyrC(O)CH2Br], giving dications [Pt2{μ-SCH2C(O)R}2(PPh3)4]2+, isolated as their PF6 salts. The X-ray structure of [Pt2{μ-SCH2C(O)Ph}2(PPh3)4](PF6)2 shows the presence of short Pt?O contacts. In contrast, the corresponding chloro compounds [typified by PhC(O)CH2Cl] and imino analogues [e.g. PhC(NOH)CH2Br] do not dialkylate [Pt2(μ-S)2(PPh3)4]. The ability of PhC(O)CH2Br to dialkylate [Pt2(μ-S)2(PPh3)4] allows the synthesis of new mixed-alkyl dithiolate derivatives of the type [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)4]2+ (R = Et or n-Bu), through alkylation of in situ-generated monoalkylated compounds [Pt2(μ-S)(μ-SR)(PPh3)4]+ (from [Pt2(μ-S)2(PPh3)4] and excess RBr). In these heterodialkylated systems ligand replacement of PPh3 occurs by the bromide ions in the reaction mixture forming monocations [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+. This ligand substitution can be easily suppressed by addition of PPh3 to the reaction mixture. The complex [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ was crystallographically characterized. X-ray crystal structures of the bromide-containing complexes [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+ (R = Et, Bu) are also reported. In both structures the coordinated bromide is trans to the SCH2C(O)Ph ligand, which adopts an axial position, while the ethyl and butyl substituents adopt equatorial positions, in contrast to the structures of the dialkylated complexes [Pt2{μ-SCH2C(O)Ph}2(PPh3)4]2+ and [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ (and many other known analogues) where both alkyl groups adopt axial positions.  相似文献   

16.
The dicarbonyl and diphosphine complexes of the type (η5-C5H5)Fe(L)2ER3 (L2 = (CO)2 (a), (Ph2P)2CH2 (b); ER3 = CH3 (1a/b); SiMe3 (2a/b), GeMe3 (3a/b), SnMe3 (4a/b)) were synthesized and studied electrochemically. Cyclic voltammetric studies on the dicarbonyl complexes 1a-4a revealed one electron irreversible oxidation processes whereas the same processes for the chelating phosphine series 1b-4b were reversible. The Eox values found for the series 1a-4a were in the narrow range 1.3-1.5 V and in the order Si > Sn ≈ Ge > C; those for 1b-4b (involving replacement of the excellent retrodative π-accepting CO ligands by the superior σ-donor and poorer π-accepting phosphines) have much lower oxidation potentials in the sequence Sn > Si ≈ Ge > C. This latter oxidation potential pattern relates directly to the solution 31P NMR chemical shift data illustrating that stronger donation lowers the Eox for the complexes; however, simple understanding of the trend must await the results of a current DFT analysis of the systems.  相似文献   

17.
The room temperature electronic absorption spectra of the oxalate bridged MM quadruply bonded complexes [(tBuCO2)3M2]2(μ-O2C2O2), where M = Mo or W have been recorded in H2O, THF:H2O mixtures, THF, CH2Cl2, toluene, DMSO, aniline, toluene saturated with N,N-dimethylaniline and ethanol. The strong absorptions in the visible region of the electronic absorption spectra assignable to the metal-to-ligand (bridge) charge transfer are shown to be highly solvent dependent. Those samples prepared in H2O, CH2Cl2 and toluene are shown to comprise of a suspension of microcrystalline particles ranging in size from 100 nm to 5 μm. Individual particles were found by scanning electron microscopy to have an aspect ratio of ∼10:1, all being needle shaped. The spectra in THF, EtOH, aniline, DMSO and toluene-N,N-dimethylaniline all show similar vibronic progressions and are attributed to discrete solvated molecular species. The spectra recorded in aniline are notably red-shifted which is proposed to arise from a combination of hydrogen bonding and Lewis base stabilization of the photoexcited state.  相似文献   

18.
19.
A new molecular loop composed of two quadruply bonded Mo2(DAniF)2 units (DAniF=N,N-di-p-anisylformamidinate) linked by two chiral allene-1,3-dicarboxylate anions has been prepared from the reaction of [cis-Mo2(DAniF)2(MeCN)4](BF4)2 with the bis(tetraethylammonium) salt of allene-1,3-dicarboxylic acid. This compound, [cis-Mo2(DAniF)2]2(O2C-CHCCH-CO2)2 (1), has been characterized by X-ray crystallography and by 1H NMR and UV-Vis spectroscopy. The molecule possesses a center of inversion and hence is meso. There is only weak electronic coupling between the two Mo2 4+ units as revealed by electrochemical measurements.  相似文献   

20.
The reactions of [Pt2(μ-S)2(PPh3)4] towards a range of palladium(II) complexes containing organometallic ligands (cyclopalladated N-donor ligands, η3-allyl, phenyl) have been explored, leading to the formation of a series of cationic, trinuclear sulfido-bridged aggregates containing {Pt2PdS2} cores. [Pt2(μ-S)2(PPh3)4] also reacts with the platinum(II) hydride complex trans-[PtHCl(PPh3)2] giving the adduct [Pt2(μ-S)2(PPh3)4PtH(PPh3)]+. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4PdPh(PPh3)]PF6 and [Pt2(μ-S)2(PPh3)4PtH(PPh3)]PF6 are reported, and show the expected bis μ3-sulfido aggregates with three square-planar metal centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号