首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 3-methoxyphenylacetic acid (3-MPAH), 4-methoxyphenylacetic acid (4-MPAH), 2,5-dimethyl-3-furoic acid (DMFUH) or 1,4-benzodioxane-6-carboxylic acid (BZDOH) with triphenyltin(IV) chloride (1:1) or diphenyltin(IV) dichloride (2:1) in the presence of triethylamine yielded the compounds [SnPh3(3-MPA)] (1), [SnPh3(4-MPA)] (2), [SnPh3(DMFU)] (3), [SnPh3(BZDO)] (4), [SnPh2(3-MPA)2] (5), [SnPh2(4-MPA)2] (6), [SnPh2(DMFU)2] (7) and [SnPh2(BZDO)2] (8), respectively. The tetranuclear complex [{Me2(DMFU)SnOSn(DMFU)Me2}2] (9) was prepared by the reaction of dimethyltin(IV) oxide and 2,5-dimethyl-3-furoic acid (DMFUH). The molecular structures of 3, 4 and 9, were determined by X-ray diffraction studies. The cytotoxic activity of the carboxylic acids (3-MPAH, 4-MPAH, BZDOH and DMFUH) and di (5-8) and triphenyltin(IV) complexes (2-4) was tested against tumor cell lines human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x and normal immunocompetent cells, peripheral blood mononuclear cells PBMC. Triphenyltin(IV) complexes show higher activities than the diphenyltin(IV) derivatives. The most active compound is [SnPh3(DMFU)] (3) with IC50 value of 0.15 ± 0.01, 0.051 ± 0.004, 0.074 ± 0.004, 0.20 ± 0.01, 0.15 ± 0.02 on HeLa, K562, Fem-x, rested and stimulated PBMC, respectively, while the most selective are [SnPh2(3-MPA)2] (5), [SnPh2(DMFU)2] (7) and [SnPh2(BZDO)2] (8). Compounds 3, 5, 7 and 8 present higher activities than cisplatin in all the tested cells and relative high selectivity especially on K562 cells.  相似文献   

2.
Treatment of Rh(acac)(CO)2 (acac = acetoacetonate) with perchloric acid followed by addition of an α-diimine (α-diimine = 1,4-bis(Ar)-2,3-dimethyl-1,4-diaza-1,3-butadiene, Ar = 3,5-dimethylphenyl, 1; 3,5-di-tert-butylphenyl, 2; and 3,4,5-trimethoxyphenyl, 3; phenyl, 4; and 4-chlorophenyl, 5) generates a series of complexes of the type [Rh(α-diimine)(CO)2][ClO4] 6-10 with varying electronic properties of the supporting diimine ligand. X-ray crystal structures have been determined for the α-diimine ligands 1-5, and complexes 6, 8, and 10.  相似文献   

3.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

4.
Ruthenium complexes [Ru(mpy)2(DMSO)2] (1) and [Ru(mbtz)2(DMSO)2] (2) containing 2-mercaptopyridine (mpy) and 2-mercaptobenzothiazole (mbtz) have been synthesized. Reactivity of 1 have been examined with 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen), EPh3 (E = P, As) and 1,2-bis(diphenylphosphino)-methane (dppm). It reacted with bipy or phen in DMF to afford [Ru(mpy)2(bipy)] (3) and [Ru(mpy)2(phen)] (4) while, its reaction with EPh3 or dppm in common organic solvents failed to afford products containing EPh3 or dppm. Complexes under investigation have been characterized by elemental analyses, spectral, electrochemical studies and structures of 1-4 have been determined crystallographically. Density functional theory calculations have been performed on 1-4 and the model complex [Ru(mpy)(PMe3)2] (5) using exchange correlation functionals BP86. Optimized bond length and angles are in good agreement with the structural data. The Ru-N and Ru-S bond distances in [Ru(mpy)2]-moiety of 1 are relatively shorter than 5, indicating higher stability of 1 in comparison to 5. The WBI values of Ru-N1, Ru-N2, Ru-S1 and Ru-S2 bonds indicate Ru-mpy bonding trend as 3 > 4 > 1 > 5. There is an overall charge flow in the direction L → [Ru(mpy)2] (L = DMSO, bipy, phen and PMe3). Due to greater ionic character and Pauli repulsive interactions for Ru-PMe3 bond in comparison to Ru-DMSO, the DMSO ligands in 1 may not be substituted by phosphine ligands experimentally.  相似文献   

5.
The reaction of [Ni(tmhd)2] and [Ni(dbm)2] with N-donor chelating ligands in dichloromethane and acetone, respectively, yields the complexes [Ni(tmhd)2(L-L)] (L-L = 2,2′-bpy 1, phen 2 and dmae 3) and [Ni(dbm)2(L-L)] (L-L = 2,2′-bpy 4, phen 5, dmae 6). UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred π → π transitions. The electrochemical studies of 1-6 reveal oxidation to Ni(III). The [Ni(tmhd)2(L-L)] 1-3 are more easily oxidized by ca. 300 mV and are quasi-reversible whereas for the [Ni(dbm)2(L-L)] series only complex 6 shows significant reversibility. X-ray crystallographic studies have been conducted in the case of [Ni(dbm)2(phen)] 5 and [Ni(dbm)2(dmae)] 6. The structures both show that the nickel metal centre is octahedral with an O4N2 coordination environment. In the structures the β-diketonate ligands exhibit a cis-arrangement, with the metal displaced out of the planar chelate ring.  相似文献   

6.
Three new one-dimensional (1-D) chain metal-nitroxide complexes of the formula [M(NIT4Py)2(e,e-trans-1,4-chdc)(H2O)2]n (M = Co(II) 1, Ni(II) 2 and Zn(II) 3; NIT4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and 1,4-chdc = 1,4-cyclohexanedicarboxylate dianion) have been synthesized and characterized structurally as well as magnetically. The X-ray crystal structure analyses of complexes 1, 2 and 3 reveal that they are isostructural. Three complexes all crystallize in neutral 1-D chains where metal-nitroxide units [M(NIT4Py)2(H2O)2] are linked by the linear 1,4-cyclohexanedicarboxylate dianion. The 1,4-chdc completes the segregation and only possesses the e,e-trans-conformation, although there are both cis- and trans-isomers in the raw material. The magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the metal ions and the nitroxides.  相似文献   

7.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

8.
The activity of homobimetallic ruthenium alkylidene complexes, [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(PCy3)] [Ru-I] and [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(IPr)] [Ru-II], on intermolecular [2+2+2] cyclotrimerisation reactions of monoynes has been investigated for the first time. It was found that these complexes can catalyse the chemo and regioselective cyclotrimerisation reactions of alkynes at both 25 and 50 °C in polar, aprotic solvents. The catalytic activity of [Ru-I] and [Ru-II] was compared to other well-known ruthenium catalysts such as Grubbs first generation catalyst [RuCl2(CHPh)(PCy3)2] [Ru-III], [RuCl(μ-Cl)(p-cymene)]2 [Ru-IV] and [RuCl2(p-cymene)PCy3] [Ru-V] complexes. To examine the effect of the steric hinderance of substrates on the regioselectivity of the reaction, a series of sterically hindered silicon containing alkynes (1a, 1b, 1c) were used. It was shown that the isomeric product distribution of the reaction shifts from 1,2,4-trisubstituted arenes to 1,3,5-trisubstituted arenes as the steric hinderance on the substrates increases. These homobimetallic ruthenium alkylidene complexes also catalysed regio- and chemo-selective cross-cyclotrimerisation reactions between silicon-containing alkynes (1a, 1b, 1c) and aliphatic alkynes (1d-g).  相似文献   

9.
The reaction of 1-(2-hydroxyethyl)-3,5-dimethylpyrazole (HL) with anhydrous metal(III) halides (M = Al, Ga, In and Cr) results in the isolation of four novel dinuclear complexes [Al(μ-L)Cl2]2 (1), [Ga(μ-L)Cl2]2 (2), [In(μ-L)Br2(H2O)]2·2thf (3) and [Cr(μ-L)Cl2(H2O)]2·1.5thf (4) in good yields. The new complexes have been characterized with the aid of analytical and spectroscopic studies. A single crystal X-ray structure determination in each case confirms the dimeric structure for all the complexes in the solid-state. The pyrazole ethanol ligand binds to the metal through both pyrazole nitrogen and bridging alkoxide oxygen terminals with the formation of a central M2O2 core involving the ethoxide anion. The metal(III) center is pentacoordinated in compounds 1 and 2, while it is hexacoordinated in compounds 3 and 4.  相似文献   

10.
The Rh(III) polypyridyl complexes of the type [RhCl(pp)([9]aneS3)]2+ [(pp) = 2,2′-bipyridine (bpy), 2,2′-bipyrimidine (bpm),1,10-phenanthroline (phen), pyrazino[2,3-f]quinoxaline (tap), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz)] 2-7 have been prepared in a stepwise manner by treatment of RhCl3 · 3H2O with the appropriate polypyridyl ligand (pp) followed by 1,4,7-trithiacyclononane. Interactions of the polypyridyl complexes with DNA were investigated by CD and UV/visible spectroscopy and by gel electrophoresis. The dpq complex 6 cleaves DNA exiguously in the dark, but UV irradiation is required to induce nuclease activity for the bpy complex 2. Whereas 2 [IC50 values: 12.8 (±0.2) and 4.4 (±0.1) μM] exhibits significantly higher cytotoxicities towards MCF-7 and HT-29 cells than 4 [IC50 values: 36.3 (±6.0) and 72.2 (±8.0)], the activity of complexes in the series 4/6/7 correlates directly with the size of the polypyridyl ligand, as documented by their respective IC50 values of 72.2 (±8.0), 20.9 (±2.8) and 7.4 (±2.2) towards HT-29 cells. Complexes of the nitrogen-rich ligands bpm (3) [IC50 values: 1.7 (±0.5) and 1.9 (±0.1) μM] and tap (5) [IC50 values: 11.5 (±0.6) and 7.6 (±4.8) μM] are considerably more potent than their bpy and phen counterparts 2 and 4. Measurement of the lactate dehydrogenase release for lymphoma (BJAB) cells after 1 h incubation demonstrates that unspecific necrosis is negligible for the most active compounds 3 and 7. Specific cell death apoptosis via DNA fragmentation was detected for BJAB cells after 72 h incubation and significant loss of the mitochondrial membrane potential in lymphoma cells indicates that the intrinsic pathway is involved.  相似文献   

11.
A series of pyrazolyl palladium(II), platinum(II) and gold(III) complexes, [PdCl2(3,5-R2bpza)] {R = H (1), R = Me (2), bpza = bis-pyrazolyl acetic acid}, [PtCl2(3,5-R2bpza)] {R = H (3a), R = Me (4)}, [AuCl2(3,5-R2bpza)]Cl {R = H (5a), R = Me (6a)} and [PdCl2(3,5-R2bpzate)] {R = Me (7)} have been synthesised and structurally characterised. Single crystal X-ray crystallography showed that the pyrazolyl ligands exhibit N^N-coordination with the metals. Anticancer activities of six complexes 1-6a were investigated against CHO cells and were found to have low activities. Substitution reactions of selected complexes 1, 2, 3a and 5a with l-cysteine show that the low anticancer activities compounds and that the rate of substitution with sulfur-containing compounds is not the cause of the low anticancer activities.  相似文献   

12.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

13.
Four novel coordination polymers, [Cd(Hdtbb)(dtbb)0.5(DMF)]n (1), {[Cd(dtbb)(2,2′-bpy)(H2O)]·2DMA}n (2), {[Cd2(dtbb)2(1,4-bix)2]·3DMF}n (3) and [Cd(dtbb)(1,4-btx)]n (4) [H2dtbb = 2,2-dithiobisbenzoic acid, 2,2′-bpy = 2,2′-bipyridine, 1,4-bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-btx = 1,4-bis(triazol-1-ylmethyl)benzene] have been synthesized and structurally characterized. Complexes 1 and 2 possess one-dimensional (1D) infinite structures. The structures of complexes 3 and 4 exhibit two dimensional (2D) frameworks, which mainly due to the differences in the bridging modes of dtbb2− ligand and the effect of the N-donor auxiliary ligands. The infrared spectra, thermogravimetric and luminescent properties were also investigated for these compounds.  相似文献   

14.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

15.
Reactions of H2L [H2L = N,N′-bis(3-methoxysalicylidene)propane-1,2-diamine] and Ln(NO3)3 · 6H2O give rise to two different mononuclear 4f complexes, namely, {[(H2L)La(NO3)3(MeOH)] · H2O}n (1) and [(H2L)Nd(NO3)3] (2). Further additions of Cu(Ac)2 · H2O to the mononuclear 4f complexes yield expected heterodinuclear Cu-4f complexes [LCu(Me2CO)Ln(NO3)3] (3, Ln = Nd; 4, Ln = Eu; 5, Ln = Dy). Complex 1 is a unique 1D polymeric chain structure, and 2 is one of the few structurally characterized discrete hexadentate salen-type mononuclear 4f complexes. Complexes 3-5 are similar to their analogues. However, they are prepared by a reversed synthetic route in contrast to their isomorphic complexes. Electrochemical behavior of heterodinuclear Cu-4f complexes 3-5 has been examined by cyclic voltammetry in acetonitrile. The redox potential of heterodinuclear Cu-4f complexes 3-5 shows significant anodic shift comparing to that of mononuclear copper complex (LCu). A tendency of anodic shift was observed in a sequence of 3 < 4 < 5. This results from the modulating effect of coordination geometry around Cu(II) ion on redox potential.  相似文献   

16.
For reactions of [{RuCl(bpy)2}2(μ-BL)]2+ (bpy = 2,2′-bipyridine, BL = H2N(CH2)nNH2 (n = 4-8, 12), [Ru2-BL]2+) with mononucleotides, the MLCT absorption bands of [Ru2-BL]2+ blue-shifted with hyperchromism for GMP and hypochromism for TMP with time. Reactions of [Ru2-BL]2+ with GMP or TMP proceed via initial Cl ions replacement by coordination to N7 of GMP and N3 of TMP, respectively. In competition binding experiments for [Ru2-BL]2+ with GMP versus TMP, only GMP selectively coordinated to ruthenium(II). For reactions with calf thymus (CT) DNA, [Ru2-BL]2+ complexes selectively bind to guanine residues of DNA. The higher degrees of binding of [Ru2-BL]2+ to CT-DNA were observed with increasing n values for H2N(CH2)nNH2, which may be explained by the length of the bridging ligands. Studies on the inhibition of the restriction enzyme Acc I revealed that [Ru2-BL]2+ complexes appear to be covalently favorable for the type of difunctional binding. In addition, it is very interesting to observe that circular dichroism spectroscopy of the supernatants obtained following the reactions of CT-DNA with racemic [Ru2-BL]2+ show enrichments of the solutions in the ΔΔ isomers, demonstrating preferences of the ΛΛ isomers for covalent binding to CT-DNA.  相似文献   

17.
Four Cd(II) metal-organic complexes, namely, [Cd(Cl)2(bbdmbm)] (1), [Cd(NO3)(N3)(bbdmbm)1.5] (2), [Cd(BBA)2(bbdmbm)(H2O)] (3), [Cd(DNBA)2(bbdmbm)] (4), (bbdmbm = 1,1-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), HBBA = 4-bromobenzoic acid, and HDNBA = 3,5-dinitrobenzoic acid) have been obtained from hydrothermal reactions of different Cd(II) salts with the mixed ligands of bbdmbm and five anions (Cl, NO3, N3, BBA and DNBA). Single crystal X-ray diffraction analyses reveal that the four complexes exhibit different structures. Complex 1 possesses a one-dimensional (1D) helical chain, which is finally extended into a two-dimensional (2D) supramolecular structure through π-π stacking interactions. Complex 2 shows a 1D ladderlike chain bridged by bbdmbm ligands with two kinds of coordination conformations. Complex 3 is a 1D coordination polymer and is ultimately extended into a 2D supramolecular network through H-bonding interactions. Complex 4 displays a dinuclear cluster, which is finally packed into a three-dimensional (3D) supramolecular framework through three kinds of π-π stacking interactions. The Cd(II) exhibits four different coordination modes in complexes 1-4, respectively. The results indicate that the anion ligands with different steric hindrance and size play important roles in the coordination modes of Cd(II) and construction of the title complexes, leading to the structural diversity. In addition, the conformations of bbdmbm ligand also show some effect on the final structures. Fluorescence properties of complexes 1-4 are reported in this paper.  相似文献   

18.
Some copper(I) complexes of the type [Cu(L)(dppe)]X (1-4) [where L = (3-trifluoromethylphenyl)pyridine-2-ylmethylene-amine; dppe = 1,2-bis(diphenylphosphino)ethane; X = Cl, CN, ClO4 and BF4] have been synthesized by the condensation of 3-aminobenzotrifluoride with 2-pyridinecarboxaldehyde followed by the reaction with CuCl, CuCN, [Cu(MeCN)4]ClO4 and [Cu(MeCN)4]BF4 in presence of dppe. The complexes 1-4 were then characterized on the basis of elemental analysis, IR, UV-Vis and 1H NMR spectral studies. The representative complex of the series 4 has been characterized by single crystal X-ray diffraction which reveal that in complex the central copper(I) ion assumes the irregular pseudo-tetrahedral geometry. The catalytic activity of the complexes was tested and it was found that all the complexes worked as effective catalyst in the amination of aryl halide.  相似文献   

19.
Reaction of VOCl2 with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives in ethanol gave as products [VO(H2Am4DH)Cl2] (1), [VO(H2Am4Me)Cl2] · 1/2HCl (2), [VO(H2Am4Et)Cl2] · HCl (3) and [VO(2Am4Ph)Cl] (4). Upon the dissolution of 1-4 in water, oxidation immediately occurs with the formation of [VO2(2Am4DH)] (5), [VO2(2Am4Me)] (6), [VO2(2Am4Et)] (7) and [VO2(2Am4Ph)] (8). The crystal and molecular structures of 5 and 6 were determined. Complexes 5-8 inhibited glycerol release in a similar way to that observed with insulin but showed a low enhancing effect on glucose uptake by rat adipocytes.  相似文献   

20.
Three novel complexes [Mn(atza)2(H2O)4] (1), [Mn(nptza)2(CH3OH)4] (2), and [Mn(a4-ptz)2(H2O)2]n · 2nH2O] (3) [atza = 5-aminotetrazole-1-acetato, nptza = 5-[(4-nitryl)phenyl] tetrazole-1-acetato, a4-ptz = 5-[N-acetato(4-pyridyl)] tetrazole] containing carboxylate-tetrazolate ligands have been synthesized and characterized by element analysis. X-ray crystallography shows that complexes 1 and 2 both contain mononuclear structure. The complex 3 is a 1D polymeric chain structure. Compounds 1-3 are self-assembled to form supramolecular structures through hydrogen bonds interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号