首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aminoallenylidene(pentacarbonyl)chromium complexes [(CO)5CrCCC(NR1R2)Ph] (1a-c) react with dimethylamine by addition of the amine to the C1C2 bond of the allenylidene ligand to give alkenyl(amino)carbene complexes [(CO)5CrC(NMe2)CHC(NR1R2)Ph] (2a-c) (R1 = Me: R2 = Me (a), Ph (b); R1 = Et: R2 = Ph (c)). In contrast, addition of a large excess (usually 20 equivalents) of ammonia or primary amines, H2NR, to solutions of [(CO)5CrCCC(NMe2)Ph] (1a) affords the aminoallenylidene complexes [(CO)5CrCCC(NHR)Ph] (1d-w) in which the dimethylamino group is replaced by NH2 or NHR, respectively. In addition to simple amines such as methylamine, butylamine, and aniline, amines carrying a functional group (allylamine, propargylamine) and amino acid esters as well as amino terpenes and amino sugars can be used to displace the NMe2 substituent. Usually the Z isomer (with respect to the partial C3-N double bond) is formed exclusively. Products derived from addition of H2NR to the C1C2 bond of 1a are not observed. The amino group in 1d-w is rapidly deprotonated by excess of amine to form iminium alkynyl chromates [1d-w], thus protecting 1d-w from addition of free amine to either C3 or across the C1C2 bond. The iminium alkynyl chromates are readily reprotonated by acids or by chromatography on wet SiO2 to reform 1d-w.  相似文献   

2.
A new cumulene diiron complex related to the Fe-only hydrogenase active site [(μ-SCH2C(S)CCH2)Fe2(CO)6] (1) was obtained by treatment of (μ-LiS)2Fe2(CO)6 with excess 1,4-dichloro-2-butyne. By controllable CO displacement of 1 with PPh3 and bis(diphenylphosphino)methane (dppm), mono- and di-substituted complexes, namely [(μ-SCH2C(S)CCH2)Fe2(CO)5L] (2: L = PPh3; 3: L = dppm) and [(μ-SCH2C(S)CCH2)Fe2(CO)4L2] (4: L = PPh3; 5: L = dppm) could be prepared in moderate yields. Treatment of 1 with bis(diphenylphosphino)ethane (dppe) afforded a double butterfly complex [(μ-SCH2C(S)CCH2)Fe2(CO)5]2(μ-dppe) (7). With dppm in refluxing toluene, a dppm-bridged complex [(μ-SCH2C(S)CCH2)Fe2(CO)4(μ-dppm)] (6) was obtained. These model complexes were characterized by IR, 1H, 31P NMR spectra and the molecular structures of 1, 2 and 5-7 were determined by single crystal X-ray analyses. The electrochemistry of 1-3 was studied and the electrocatalytic property of 1 was investigated for proton reduction in the presence of HOAc.  相似文献   

3.
The addition reactions of zinc(II) chloride to N-substituted pyridine-2-carbaldimines [Py-CHNR, R = Me (1a), Ph (1b), Bz (1c), allyl (1d)] lead to different complexes dependent on the N-bound substituent R. The 1:1 complexes show molecular structures of the type [(Py-CHNR)ZnCl2] for R = methyl (2a), phenyl (2b), and allyl (2d) with a distorted tetrahedral environment for the zinc atom. The zinc complex with the N-methylated pyridine-2-carbaldimine also forms a dimer of the type [(Py-CHNR)ZnCl2]2 (2a)2 with a square pyramidal coordination sphere of zinc. A 3:2 stoichiometry is observed for R = benzyl and an ion pair of the type [Zn(Py-CHNR)3]2+ [ZnCl4]2− (2c) is found in the solid state.  相似文献   

4.
A metathesis reaction of [CpMCl2(PR3)] [M = Rh, R = Ph (1), Me (3); M = Ir, R = Ph (2), Me (4)] takes place in the presence of potassium butadienesulfinate (SO2CHCHCHCH2)K (9) to afford the mononuclear compounds [CpM(Cl)(PR3)(η1-SO2CHCHCHCH2)] [M = Rh, R = Ph (11S), (11W); M = Rh, R = Me (13S), (13W)] and [M = Ir, R = Ph (12S); M = Ir, R = Me (14S), (14W)] under different reaction conditions. The addition of PR3 (R = Ph, Me) to CpIr(Cl)[(1,2,5-η)-SO2CHCHCHCH2] (7) affords the corresponding iridium isomers 12S, 12W and 14S, in a non-selective reaction, along with the corresponding dichloride compounds 2 or 4. The 1H and 13C{1H} NMR data are consistent with the butadienesulfonyl ligands coordinated exclusively through the sulfur atom, and they show the presence of two isomers, described as the S and W conformers, which can be isolated separately. There is clear evidence that these isomers correspond to the kinetic and thermodynamic derivatives, respectively.  相似文献   

5.
Reaction of 3,4-difluoropyrrole with the labile triosmium cluster [Os3(CO)10(CH3CN)2] affords products in which C-H, N-H and C-F bonds are cleaved under mild conditions. C-H and N-H bonds are cleaved to give [Os3H(NCCFCFCH2)(CO)10] (1) a non-aromatic stabilised form of 3,4-difluoropyrrole. Thermolysis of 1 affords in moderate yields the compounds [Os3H2(CCCFCHNH)(CO)9] (2) and [Os3H2(NCHCFCFC)(CO)9] (3). For compound 3, C-H and N-H bonds are cleaved with concomitant migration of H atoms to the metal framework. In contrast, for compound 2 activation of C-H and C-F bonds leads to coordination of the ligand through the carbon atoms, acting as a four-electron donating species.  相似文献   

6.
A series of triphenylphosphine coordinated silver α,β-unsaturated carboxylates of type [Ag(O2CR)(PPh3)n: n = 1, R = CH3CHCH (2a), (CH3)2CCH (2b), CH3CH2CHCH (2c), CH3CH2CH2CHCH (2d), PhCHCH (2e), CH2CH (2f); n = 2, CH3CHCH (3a), (CH3)2CCH (3b), CH3CH2CHCH (3c), CH3CH2CH2CHCH (3d)] were prepared by reaction of relative silver carboxylates (1a-1f) with triphenylphosphine in chloroform. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13C NMR, 31P NMR and IR spectroscopy. Thermal stability of the complexes has been determined by TG analysis. The molecular structure of [Ag((O2CCHC(CH3)2))(PPh3)2] (3b) shows that the senecioato ligand is chelated with silver atom and generate, a distorted tetrahedron.  相似文献   

7.
Different protic nucleophiles (i.e.Ph2CNH, PhSH, MeCO2H, PhOH) can be added to the CC bond of [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CCTol}(Cp)2][SO3CF3] (1), affording new diiron alkenyl methoxy carbene complexes.The additions of Ph2CNH and MeCO2H are regio and stereoselective, resulting in the formation of the 5-aza-1-metalla-1,3,5-hexatriene [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(OMe)CβHCγ(Tol)(NCPh2)}(Cp)2][SO3CF3] (2), and the 2-(acyloxy)alkenyl methoxy carbene complex [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(OMe)CβHCγ(Tol)OC(O)Me)}(Cp)2][CF3SO3] (5); the E isomer of the former and the Z of the latter are formed exclusively.Conversely, the addition of PhSH is regio but not stereoselective; thus, both the E and Z isomers of [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(OMe)CβHCγ(Tol)(SPh)}(Cp)2][SO3CF3] (3) are formed in comparable amounts.Compounds 3 and 5 are demethylated upon chromatography through Al2O3, resulting in the formation of the acyl complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(O)CβHCγ(Tol)(SPh)}(Cp)2] (4) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){Cα(O)CβHCγ(Tol)OC(O)Me}(Cp)2] (6), respectively, both with a Z configured CβCγ bond.Finally, the reaction of 1 with PhOH proceeds only in the presence of an excess of Et3N affording the 2-(alkoxy)alkenyl acyl complex [Fe2{μ-CN(Me)(Xyl)}(μ- CO)(CO){Cα(O)CβHCγ(Tol)(OPh)}(Cp)2] (7). The crystal structures of 4 · CH2Cl2 and 7 · 0.5CH2Cl2 have been determined by X-ray diffraction experiments.  相似文献   

8.
Bis(ferrocenyl)-substituted allenylidene complexes, [(CO)5MCCCFc2] (1a-c, Fc = (C5H4)Fe(C5H5), M = Cr (a), Mo (b), W (c)) were obtained by sequential reaction of Fc2CO with Me3Si-CCH, KF/MeOH, n-BuLi, and [(CO)5M(THF)]. For the synthesis of related mono(ferrocenyl)allenylidene chromium complexes, [(CO)5CrCCC(Fc)R] (R = Ph, NMe2), three different routes were developed: (a) reaction of the deprotonated propargylic alcohol HCCC(Fc)(Ph)OH with [(CO)5Cr(THF)] followed by desoxygenation with Cl2CO, (b) Lewis acid induced alcohol elimination from alkenyl(alkoxy)carbene complexes, [(CO)5CrC(OR)CHC(NMe2)Fc], and (c) replacement of OMe in [(CO)5CrCCC(OMe)NMe2] by Fc. Complex 1a was also formed when the mono(ferrocenyl)allenylidene complex [(CO)5CrCCC(Fc)NMe2] was treated first with Li[Fc] and the resulting adduct then with SiO2. The replacement route (c) was also applied to the synthesis of an allenylidene complex (7a) with a CC spacer in between the ferrocenyl unit and Cγ of the allenylidene ligand, [(CO)5CrCCC(NMe2)-CCFc]. The related complex containing a CHCH spacer (9a) was prepared by condensation of [(CO)5CrCCC(Me)NMe2] with formylferrocene in the presence of NEt3. The bis(ferrocenyl)-substituted allenylidene complexes 1a-c added HNMe2 across the Cα-Cβ bond to give alkenyl(dimethylamino)carbene complexes and reacted with diethylaminopropyne by regioselective insertion of the CC bond into the Cβ-Cγ bond to afford alkenyl(diethylamino)allenylidene complexes, [(CO)5MCCC(NEt2)CMeCFc2]. The structures of 5a, 7a, and 9a were established by X-ray diffraction studies.  相似文献   

9.
The reaction between Zn(OAc)2 · 2H2O (1) and the 3-iminoisoindolin-1-ones H2NCNC(O)C6R1R2R3R4 (R1-R4 = H 2; R1, R4 = H, R2, R3 = Cl 3; R1, R3, R4 = H, R2 = Me 4) in EtCN at 70 °C for ca. 12 h affords the novel family of complexes [Zn{H2NCNC(O)C6R1R2R3R4}2(OAc)2] (R1-R4 = H 5; R1, R4 = H, R2, R3 = Cl 6; R1, R3, R4 = H, R2 = Me 7) in excellent (90% and 93% for 5 and 6, correspondingly) to good (64% for 7) yields. The isolated compounds were characterized by elemental analyses (C, H, N), IR, NMR and ESI+-MS. X-ray diffraction data for 2 and 5 indicate that both free (2) and ligated (5) 3-iminoisoindolin-1-ones exist in the zwitterionic form.  相似文献   

10.
The reaction of the chelating P,N ligand RNC(But)CH(R)PPh2 (R = SiMe3) (1) with CuCl and CuCl2 (probably by way of reduction to Cu(I) by the phosphine ligand) or Cu(NCCH3)4ClO4 yielded the dimeric 1:1 complex [Cu{PPh2CH(R)C(But)NR}Cl]2 (2) or the monomeric 2:1 complex [Cu{PPh2CH(R)C(But)NR}2]ClO4 (3), respectively. The presence of trace amounts of water during the reaction resulted in the successive cleavage of the two trimethylsilyl groups of the ligand and the formation of the monomeric chelate complexes [Cu{PPh2CH(R)C(But)NH}2]ClO4 (4) and [Cu{PPh2CH2C(But)NH}2]ClO4 (5). Oxidation of 5 by atmospheric oxygen led to small quantities of the blue Cu(II) complex [Cu{(O)PPh2CH2C(But)NH}2](ClO4)2 (6). The dimeric gold complexes [Au{PPh2CH2C(But)NH}]2X2 (X = BF4, ClO4) (7) were similarly obtained from the previously described Au{PPh2CH(R)C(But)NR}Cl by replacing the covalently bound chlorine with the weakly coordinating anions in the presence of small quantities of water. The solution and solid state structures (except 5) of all complexes were determined by NMR spectroscopy and X-ray crystallography.  相似文献   

11.
Use of a simple inorganic ring system with the cyclodiphosph(III)azane skeleton [e.g. [(RNH)P-N(t-Bu)]2 [R = t-Bu (7), i-Pr (8)] to probe some of the intermediates proposed in phosphine mediated organic reactions is highlighted. Thus the reaction of 7-8 with the allenylphosphine oxide Ph2P(O)C(Ph)CCH2 (9) affords the phosphinimines [(RNH)P(μ-N-t-Bu)2P(N-R)-C(CH2)CH(Ph)-P(O)Ph2] [R = t-Bu (10), i-Pr (11)], while a similar reaction of 7-8 with dimethyl maleate (or dimethyl fumarate) affords the ylides [(RNH)P(μ-N-t-Bu)2P(NH-R)C(CO2Me)-CH2(CO2Me) [R = t-Bu (18), i-Pr (19)]. The implication of such reactions on phosphine mediated organic transformations including Morita-Baylis-Hillman reaction is mentioned. In a rather rare type of situation, an unusually long phosphoryl (PO) bond [1.538 (5) Å] as revealed the X-ray structure of {(R)-6,6′-(t-Bu)2-1,1′-(C10H5)2-2,2′-O2-}{P(O)(N-t-Bu)2-P(Se)} (27) is rationalized by means of crystallographic disorder in packing after comparing the data with that in the literature and {1,1′-(C10H6)2-2,2′-O2}{P(Se)(N-t-Bu)2-P(Se)} (29). X-ray structures of the new compounds 10-11, 18-19, 27 and 29 are discussed. Compound 10 crystallizes in the chiral space group Pca2(1) with (S)-chirality at the carbon center [-C(CH2)CH(Ph)-P] suggesting a case of spontaneous resolution through crystallization.  相似文献   

12.
The tetragonal-pyramidal VO2+ complexes [VO{(RSC-S)N-NX}2] (1-6) were synthesised by the reactions of VO(OCHMe2)3 with the dithiocarbazate ligands RSC(S)-NH-NX, where X = cyclo-pentyl, cyclo-hexyl or 4-Me2N-C6H4-CH, and R = CH3 or CH2C6H5. The compounds were characterised by elemental analysis, IR- and mass spectrometries, and in cases of compounds 1, 3, 4 and 5, by X-ray diffraction. The chiral compound 4 (X = cyclo-hexyl, R = CH2C6H5) crystallises in the C configuration. In compound 5, the VO moiety is disordered (83.3:16.7%) with respect to the plane spanned by the four equatorial ligand functions.  相似文献   

13.
A new tris(pyridylhydrazonyl)methane ligand, HC[N(Me)NC(H)Py]3 (L2) (Py = pyridyl), has been synthesized. The latter is accessible from triethyl orthoformate and 2-(2-methylhydrazono)methylpyridine in 63% isolated yield. We have investigated its coordination chemistry towards copper ions and compared the results with those obtained for the recently developed multifunctional ligand, (S)P[N(Me)NC(H)Py]3 (L1). The copper(II) complexes [Cu(L1)](OTf)2 (3) and [Cu(L2)](OTf)2 (4) (OTf = triflate, (O3SCF3)) are mononuclear with the cations coordinated by three imino and three pyridine nitrogen atoms. Almost axial symmetric EPR spectra have been obtained in frozen solutions at X-band. The spectra show resolved hyperfine couplings to the copper nuclei on one of the three g values. X-ray structural analyses revealed in each case a cis bond distortion and a trigonal twist due to Jahn-Teller effects. The CuII/CuI reduction potentials of 3 and 4 were shown to be remarkably low ( = −0.11 V for 3;  = −0.34 V for 4), especially for 3 consisting of the phosphorus supported ligand L1. The corresponding copper(I) complexes [Cu(L1)](OTf) (5) and [Cu(L2)](OTf) (6) are accessible by reduction using decamethyl ferrocene. Both copper(I) complexes have been characterized in detail including X-ray structure analyses.  相似文献   

14.
Reaction of the Schiff base ligands 2-Br-4,5-(OCH2O)C6H2C(H)NCH2CH2NMe2 (a) and 4,5-(OCH2CH2)C6H3C(H)NCH2CH2NMe2 (b) with Pd(OAc)2 or K2[PdCl4] leads to the mononuclear cyclometallated compounds [Pd{2-Br-4,5-(OCH2O)C6HC(H)NCH2CH2NMe2-C6,N,N}(OCOMe)] (1a) and [Pd{4,5-(OCH2CH2)C6H2C(H)NCH2CH2NMe2-C6,N,N}(Cl)] (1b), derived from C-H activation at the C6 carbon. Treatment of a with Pd2(dba)3 gave [Pd{4-5-(OCH2O)C6H2C(H)NCH2CH2NMe2-C2,N,N}(Br)] (2a), via C-Br activation.The metathesis reaction of 1a with aqueous sodium chloride gave [Pd{2-Br-4,5-(OCH2O)C6HC(H)NCH2CH2NMe2-C6,N,N}(Cl)] (3a), with exchange of the acetate group by a chloride ligand. Treatment of the cyclometallated monomers 1a-3a with PPh3 in a 1:1 molar ratio yielded the mononuclear complexes [Pd{2-Br-4,5-(OCH2O)C6HC(H)NCH2CH2NMe2-C6,N}(L)(PPh3)] (L: OAc, 4a; Cl, 5a) and [Pd{4-5-(OCH2O)C6H2C(H)NCH2CH2NMe2-C2,N}(Br)(PPh3)] (6a), with Pd-NMe2 bond cleavage. However, treatment of a solution of 3a or 2a with silver trifluoromethanesulfonate, followed by reaction with PPh3 in acetone yielded the cyclometallated complexes [Pd{2-Br-4,5-(OCH2O)C6HC(H)NCH2CH2NMe2-C6,N,N}(PPh3)][CF3SO3] (7a) and [Pd{4-5-(OCH2O)C6H2C(H)NCH2CH2NMe2-C2,N,N}(PPh3)][CF3SO3] (8a), respectively, where the Pd-NMe2 bond was retained.The reaction of the ligands 2-Br-4,5-(OCH2O)C6H2C(H)N(2′-OH-5′-tBuC6H3) (c) and 4,5-(OCH2CH2)C6H3C(H)N(2′-OH-5′-tBuC6H3) (d) with Pd(OAc)2 gave the tetranuclear complexes [Pd{2-Br-4,5-(OCH2O)C6HC(H)N(2′-O-5′-tBuC6H3)-C6,N,O}]4 (1c) and [Pd{4,5-(OCH2CH2)C6H2C(H)N(2′-O-5′-tBuC6H3)-C6,N,O}]4 (1d), respectively. Treatment of 1c with PPh3 in 1:4 molar ratio, gave the mononuclear species [Pd{2-Br-4,5-(OCH2O)C6HC(H)N(2′-(O)-5′-tBuC6H3)-C6,N,O}(PPh3)] (2c) with opening of the polynuclear structure after P-Obridging bond cleavage.The structure of compounds 2a, 1c and 1d has been determined by X-ray diffraction analysis.  相似文献   

15.
The reactions of [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(Cl) (9, R = CO2Me) with propargyl alcohol derivatives (2-propyn-1-ol, 2-methyl-3-butyn-2-ol, 1-ethynylcyclopentanol, and 1-ethynylcyclooctanol), in the presence of water leads to the formation of iridium(III)-vinyl complexes bearing the general structure [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(CO)(κ1-vinyl) where vinyl = -CHCH2, -(E)-CHCHMe, -CHC(CH2)4, or -CHC(CH2)7. In these, the CO ligand was derived from the terminal carbon of the starting alkyne and the oxygen atom from water. Under anhydrous conditions, 9 undergoes reaction with 2-propyn-1-ol to give trimethyl 1,3-dihydro-3-oxo-4,5,6-isobenzofurantricarboxylate, the result of a cycloaromatization/transesterification involving the buta-1,3-dien-1,4-diyl ligand in 9 and 2-propyn-1-ol.  相似文献   

16.
The new diiron alkynyl methoxy carbene complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CCR′}(Cp)2]+ (R = 2,6-Me2C6H3 (Xyl), R′ = Tol, 3a; R = Xyl, R′ = Ph, 3b; R = Xyl, R′=Bun, 3c; R = Xyl, R′=SiMe3, 3d; R = Me, R′ = Tol, 3e; R = Me, R′ = Ph, 3f) are obtained in two steps by addition of R′CCLi (R′ = Tol, Ph, Bun, SiMe3) to the carbonyl aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2]+ (R = Xyl, 1a; Me, 1b), followed by methylation of the resulting alkynyl acyl compounds [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(O)CCR′}(Cp)2] (R = Xyl, R′ = Tol, 2a; R = Xyl, R′ = Ph, 2b; R = Xyl, R′ = Bun, 2c; R = Xyl, R′ = SiMe3, 2d; R = Me, R′ = Tol, 2e; R = Me, R′ = Ph, 2f). Complexes 3 react with secondary amines (i.e., Me2NH, C5H10NH) to give the 4-amino-1-metalla-1,3-dienes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CHC(R′)(NMe2)}(Cp)2]+ (R = Xyl, R′ = Tol, 4a; R = Xyl, R′ = Ph, 4b; R = Me, R′ = Ph, 4c) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(Tol)(NC5H10)}(Cp)2]+, 5. The addition occurs stereo-selectively affording only the E-configured products. Analogously, addition of primary amines R′NH2 (R′ = Ph, Et, Pri) affords the 4-(NH-amino)-1-metalla-1,3-diene complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(R)(NHR′)}(Cp)2]+ (R = Ph, 6a; Et, 6b; Pri, 6c). In the case of 6a, only the E isomer is formed, whereas a mixture of the E and Z isomers is present in the case of 6b,c, with prevalence of the latter. Moreover, the two isomeric forms exist under dynamic equilibrium conditions, as shown by VT NMR studies. Complexes 6 are deprotonated by strong bases (e.g., NaH) resulting in the formation of the neutral vinyl imine complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(NR)(Tol)}(Cp)2] (R = Ph, 7a; Et, 7b; Pri, 7c); the reaction can be reverted by addition of strong acids. X-ray crystal structures have been determined for 3a[CF3SO3] · Et2O, 4c[CF3SO3], 6a[BF4] · CH2Cl2, 6c[CF3SO3] · 0.5Et2O and 7a · CH2Cl2.  相似文献   

17.
Treatment of NaO2CCHC(Me)Fc with cadmium acetate and iron(II) sulfate in the presence of 2,2′-bipy yielded [Cd2Fe(μ-O2CCHC(Me)Fc)22-O2CCHC(Me)Fc)222-O2CCHC(Me)Fc)2(2,2′-bipy)2] · 2H2O (1); while from NaO2CC6H4{C(O)Fc-o}, cadmium acetate, and pbbm the product was {[Cd(η2-O2CC6H4{C(O)Fc-o})2(pbbm)] · 0.5H2O}n (2) [Fc = (η5-C5H5)Fe(C5H45); 2,2′-bipy = 2,2′-bipyridyl; pbbm = 1,1′-(1,5-pentamethylene)bis-1H-benzimidazole]. Compounds 1 and 2 have been characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. In centro-symmetric crystalline 1, the Fe and the two flanking atoms are six-coordinate; the three carboxylato ligands between the Fe and a Cd atom have different coordination modes. Crystalline 2 consists of an infinite polymeric chain, in which adjacent [Cd(η2-O2CC6H4{C(O)Fc-o})2] units are linked by pbbm ligands; thus each Cd atom is six-coordinate. Some electrochemical properties of the two complexes are reported.  相似文献   

18.
Diffusion NMR investigations were carried out in CD2Cl2 for a series of neutral (1-7) and cationic (8-10) square planar palladium complexes. Diffusion data were elaborated through a modified Stokes-Einstein equation that takes into account the size and shape of molecules. The hydrodynamic volume at infinite dilution of all complexes was found to be similar to the crystallographic volume and always much larger than the van der Waals volume. The self-aggregation tendency of [Pd(N,C)(N,N)][PF6] ionic complexes [(N,C) = (C6H4-(Ph)C(O)-CN-Et); 8, (N,N) = 2,2′-bipirydine; 9, (N,N) = (2,6-(iPr)2-C6H3)NC(Me)-C(Me)N(2,6-(iPr)2-C6H3); 10, (N,N) = (2,6-(iPr)2-C6H3)NC(R′)-C(R′)N(2,6-(iPr)2-C6H3), R′2 = naphthalene-1,8-diyl] was investigated by performing 1H and 19F diffusion experiments as a function of the concentration. Clear evidence for the formation of ion triples containing two cationic units was obtained for 8, most likely due to the establishment of a weak Pd?O interaction. The tendency to form ion triples was much reduced in 9 and 10, having an increased steric hindrance in the apical positions. While 9 showed the usual tendency to afford a mixture of free ions and ion pairs, solvated ions were the predominant species in the case of 10 even at high concentration values (approaching 100 mM).  相似文献   

19.
In this paper it is reported the synthesis of the phosphonium salts [Ph2P(CH2)n(Ph)2PCH2COOMe]Br (n = 1 (1), 2 (2)) and [Ph2P(CH2COOMe)(CH2)n(Ph)2PCH2COOMe]Br2 (n = 3 (3)) derived from the reactions of the diphosphines dppm, dppe and dppp with methyl bromoacetate. By reaction of the monophosphonium salt of dppm and dppe with the strong base Na[N(SiMe3)2] the corresponding carbonyl stabilized ylides Ph2P(CH2)n(Ph)2PCHCOOMe (n = 1 (4), 2 (5)) were obtained. The Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide was reacted with Pd(II) and Pt(II) substrates. From these reactions were isolated exclusively complexes in which the ylide was chelated to the metal through the free phosphine group and the ylidic carbon atom. A further reaction of the Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide with 1.5 equiv. of Na[N(SiMe3)2] gives the bifunctionalized ketenylidene Ph2P(CH2)2(Ph)2PCCO (6) system. This cumulenic ylide reacts with Pt(II) complexes to form a chelated derivative in which IR and NMR spectra suggest the breaking of the CC bond of the -CCO group.  相似文献   

20.
Novel bipyridine-type linking ligands L1 ((4-py)-CHN-C10H6-NCH-(4-py)) and L2 ((3-py)-CHN-C10H6-NCH-(3-py)), a pair of isomers due to possessing different pairs of terminal pyridyl groups, were prepared by the Schiff-base condensation. In ligand L1, the N?N separation between the terminal pyridyl groups is 16.0 Å, with their nitrogen donor atoms at the para positions (4,4′). The corresponding N?N separation in ligand L2 is 14.2 Å, with the nitrogen donor atoms at the meta positions (3,3′). 1-D zigzag-chain coordination polymers [Zn(L1)(NO3)2] (1) and [Zn(L2)(NO3)2] (2) were prepared by reactions of Zn(NO3)2 · 6H2O with ligands L1 and L2, respectively, by solution diffusion. Polymer 3, [Cd(L1)1.5(NO3)2], prepared from Cd(NO3)2 · 4H2O and L1, exhibits a 1-D ladder structure, whose repeating ladder unit consists of four Cd metals and four L1 ligands to create a large 76-membered ring with dimensions of 20.8 × 20.8 Å. All products were structurally characterized by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号