首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of three bis(thiosemicarbazone) compounds formed by the reaction of benzil with either thiosemicarbazide, 4-methyl-3-thiosemicarbazide or 4-phenyl-3-thiosemicarbazide are reported. The compounds were characterised by NMR spectroscopy, mass spectrometry and in the case of benzil bis(4-methyl-3-thiosemicarbazone) and benzil bis(4-phenyl-3-thiosemicarbazone) by X-ray crystallography. Attempts to purify benzil bis(thiosemicarbazone) and benzil bis (4-methyl-3-thiosemicarbazone) by recrystallisation resulted in the isolation of cyclised products that were characterised by X-ray crystallography. The 3 bis(thiosemicarbazone) compounds were used to synthesise both Cu(II) and Cu(I) complexes. The copper(II) complexes were formed by the reaction of the proligands with copper(II) acetate which gave neutral copper(II) complexes in which the thiosemicarbazone is doubly deprotonated, acting as a dianionic ligand. The copper(II)-benzil bis(4-phenyl-3-thiosemicarbazonato) complex was characterised by X-ray crystallography to show the copper in an essentially square planar N2S2 environment. The copper(I) complexes were synthesised by reacting the bis (thiosemicarbazone) ligands with [Cu(CH3CN)4]PF6 to give cationic complexes. The copper(I)-benzil-bis(thiosemicarbazone) complex was characterised by X-ray crystallography which revealed that the complex was a dimeric dication. Each of the benzil bis(thiosemicarbazone) ligands act as a bidentate N,S donor to each copper(I) atom, forming an overall helical structure in which each copper atom is in a strongly distorted tetrahedral N2S2 environment. Electrochemical measurements show that the copper(II)-benzil bis(thiosemicarbazonato) complex undergoes a reversible reduction at biologically accessible potentials.  相似文献   

2.
Copper(II) and nickel(II) complexes of potentially N2O4 Schiff base ligands 2-({[2-(2-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}ethoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L1) and 2-({[2-(4-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}butoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L2) prepared of 5-phenylazo salicylaldehyde (1) and two various diamines 2-[2-(2-aminophenoxy)ethoxy]aniline (2) and 2-[4-(2-aminophenoxy)butoxy]aniline (3) were synthesized and characterized by a variety of physico-chemical techniques. The single-crystal X-ray diffractions are reported for CuL1 and NiL2. The CuL1 complex contains copper(II) in a near square-planar environment of N2O2 donors. The NiL2 complex contains nickel(II) in a distorted octahedral geometry coordination of N2O4 donors. In all complexes, H2L1 behaves as a tetradentate and H2L2 acts as a hexadentate ligand. Cyclic voltammetry of copper(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

3.
A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs.  相似文献   

4.
Copper(I)/(II) complexes with the ligand 2-aminoethyl(2-pyridylmethyl)1,2-ethanediamine (apme, abbreviated as PDT in the literature as well) were prepared and characterized. Crystal structures of the copper(I) complexes, [Cu2(apme)2]X2 (1, 2; X = ClO4, CF3SO3), showed that they are dinuclear, in contrast to the trigonal bipyramidal copper(II) complexes [Cu(apme)Cl]BPh4 (3) and [Cu(apme)(DMF)](BPh4)2 (4). 1 and 2 could be investigated in solution by NMR spectroscopy and 3 and 4 by cyclovoltammetry. From the results of these studies it is clear that in solution equilibria between the dinuclear complexes 1/2 and another species exist, most likely the monomeric [Cu(apme)CH3CN]+. Time-resolved UV/vis spectra at low temperatures allowed the spectroscopic detection of dioxygen adduct complexes as reactive intermediates during the oxidation of 1/2 with dioxygen that seem to play an important role in copper enzymes such as peptidylglycine--hydroxylating monooxygenase (PHM).  相似文献   

5.
The reactivity of nitrite towards the copper(II) and copper(I) centers of a series of complexes with tridentate nitrogen donor ligands has been investigated. The ligands are bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-bb), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-bb), and bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (ddah) and carry two terminal benzimidazole (1-bb, 2-bb) or pyrazole (ddah) rings and a central amine donor residue. While 2-bb and ddah form two adjacent six-membered chelate rings on metal coordination, 1-bb forms two smaller rings of five members. The binding affinity of nitrite and azide to the Cu(II) complexes (ClO4 as counterion) has been determined in solution. The association constants for the two ligands are similar, but nitrite is a slightly stronger ligand than azide when it binds as a bidentate donor. The X-ray crystal structure of the nitrite complex [Cu(ddah)(NO2)]ClO4 (final R=0.056) has been determined: triclinic P1ˉspace group, a=8.200(2) ?, b=9.582(3) ?, c=15.541(4) ?. It may be described as a perchlorate salt of a “supramolecular” species resulting from the assembly of two complex cations and one sodium perchlorate unit. The copper stereochemistry in the complex is intermediate between SPY and TBP, and nitrite binds to Cu(II) asymmetrically, with Cu-O distances of 2.037(2) and 2.390(3) ? and a nearly planar CuO2N cycle. On standing, solutions of [Cu(ddah)(NO2)]ClO4 in methanol produce the dinuclear complex [Cu(ddah)(OMe)]2(ClO4)2, containing dibridging methoxy groups. In fact the crystal structure analysis (final R=0.083) showed that the crystals are built up by dinuclear cations, arranged on a crystallographic symmetry center, and perchlorate anions. Electrochemical analysis shows that binding of nitrite to the Cu(II) complexes of 2-bb and ddah shifts the reduction potential of the Cu(II)/Cu(I) couple towards negative values by about 0.3 V. The thermodynamic parameters of the Cu(II)/Cu(I) electron transfer have also been analyzed. The mechanism of reductive activation of nitrite to nitric oxide by the Cu(I) complexes of 1-bb, 2-bb, and ddah has been studied. The reaction requires two protons per molecule of nitrite and Cu(I). Kinetic experiments show that the reaction is first order in [Cu(I)] and [H+] and exhibits saturation behavior with respect to nitrite concentration. The kinetic data show that [Cu(2-bb)]+ is more efficient than [Cu(1-bb)]+ and [Cu(ddah)]+ in reducing nitrite. Received: 19 November 1999 / Accepted: 20 January 2000  相似文献   

6.
The synthesis and X-ray structures of copper(II) complexes of the bidentate ligands, N-(4-oxo-5,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)-N′-phenylguanidino, 2-uanidinobenzimidazolo and N-(4-oxo-3-phenyl-1,3-diazaspiro[4.4]non-1-en-2-yl)guanidino, are reported. These complexes, which possess potential doublet (DA) or triplet (DAD) hydrogen bonding motifs, can form supramolecular structures based on synthons involving hydrogen bonding or phenyl embraces. The changes in supramolecular structure resulting from small changes in ligand structure, as well as from the use of different solvents for their crystallisation, are examined. The structures adopted are compared with others reported previously for complexes of related ligands.  相似文献   

7.
The synthesis and characterization of three complexes with a potent nonsteroidal anti-inflammatory drug niflumic acid {2-[3-(trifluoromethyl)phenyl]aminonicotinic acid} with formula [Cu(niflumato)2L] (L = H2O, DMSO = dimethylsulfoxide, DMF = N,N-dimethylformamide) were investigated. The crystal and molecular structure of the {Cu(niflumato)2(DMSO)}2 was reported. Crystallographic data are as follows: monoclinic system, space group P2(1)/n, Z = 2, a = 11.1318(8), b = 17.513(2), c = 15.336(1) A, beta = 103.316(8) degrees, V = 2909.4(4) A3. The structure was refined to R = 0.030 and wR = 0.037 for 3702 reflections with I > sigma (I). It consists of centrosymmetric binuclear units with the Cu-Cui (symmetry code i: 1-x, -y, 1-z) distance between two centrosymmetrically related ions of 2.6272(5) A. Each Cu(II) ion in [Cu2(DMSO)2(mu-niflumato)4] is coordinated to an apical dimethylsulfoxide O atom on the one hand and to the equatorial carbonyl and carboxylic O atoms of two crystallographically independent niflumate moieties and their centrosymmetric counterparts on the other hand. In spite of the low-temperature (190 K) crystal measurements, one L-CF3 grouping exhibits some disorder. The biological activities of these complexes were compared to that of niflumic acid. Niflumic acid and its various copper complexes significantly inhibited polymorphonuclear leukocyte (PMNL) oxidative metabolism, as assessed by chemiluminescence and O2- generation measurement. This effect was dose-dependent. All copper complexes exerted a similar inhibiting effect which was always significantly higher than that exerted by the parent drug.  相似文献   

8.
A series of copper(II) and zinc(II) complexes involving a tridentate O,N,O'-donor Schiff base derived from salicylaldehyde and beta-alanine {i.e. N-salicylidene-beta-alanine(2-), (L)}, having the composition [Cu(2)(L)(2)(H(2)O)].H(2)O (1), [Cu(L)(H(2)O)](n) (2), and [Zn(L)(H(2)O)](n) (3), have been prepared and characterized by elemental analyses, UV-visible (UV-VIS), FT-IR and ESI-MS spectra, and thermal analyses. Complexes 1 and 2 have been investigated by single crystal X-ray analysis and also by temperature dependent magnetic susceptibility measurements (294-80K). All prepared complexes have been evaluated by the antiperoxynitrite activity assay and alloxan-induced diabetes model. The significant antioxidant and antidiabetic activities have been found in the case of both copper(II) complexes 1 and 2. In spite of first two complexes, the zinc(II) complex 3, as well as the potassium salt of the ligand (KHL) showed only insignificant protective effect against the tyrosine nitration in vitro.  相似文献   

9.
6-Deoxy-6-{4-[N-(2-aminoethyl)propaneamide]imidazolyl}cyclohepta amylose (CDcarc) and 6-{3-amine-N-[2-(imidazol-4-yl)ethyl]propaneamide}-6-deoxycyclohepta amylose (CDcrac) were synthesized with the aim to obtain copper(II) complexes able to scavenge superoxide radical. The copper(II) complexes were studied by means of UV-Vis, ESR, CD, ESI-MS spectroscopies to gain information about the species present in solution as function of the pH. The antioxidant activity was assayed against superoxide enzymatically generated and compared with that obtained from copper(II) complex with underivatized carcinine. The hydroxyl radical scavenging ability of these new ligands was also tested.  相似文献   

10.
Three hydrazone ligands, H2L1-H2L3, made from salicylaldehyde and ibuprofen- or naproxen-derived hydrazides, were prepared and transformed into the corresponding copper(II) complexes [Cu(II)L1] x H2O, [Cu(II)L2], and [(Cu(II))2(L3)2] x H2O x DMF (Scheme). The X-ray crystal structure of the last-mentioned complex was solved (Fig. 1), showing a square-planar complexation geometry, and the single units were found to form a one-dimensional chain structure (Fig. 2). The interactions of these complexes with CT-DNA were studied by different techniques, indicating that they all bind to DNA by classical and/or non-classical intercalation modes.  相似文献   

11.
The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography.In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit.Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit.Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand).On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical.Since these complexes are redox active species, we analyzed their activity toward the nucleic acid DNA, a macromolecule prone to oxidative damage.Interestingly these complexes promoted DNA cleavage following an oxygen dependent pathway.  相似文献   

12.
The reactions of [Cu(NCCH3)4]BF4 with 2,6-(dicyclohexylphosphinomethyl)pyridine and 2-(diisopropylphosphinomethyl)-1-methylimidazole afford Cu(I) species that convert slowly to the Cu(II) complexes [CuCl{Cy2P(O)CH2pyCH2P(O)Cy2}(H2O)]BF4 and [Cu{MelmCH2P(O)Pri2}2](BF4)2, respectively, when their solutions are exposed to air. The structures of the Cu(II) complexes have been established by X-ray crystallography.  相似文献   

13.
The formation of complexes between copper(II) halides and 2,2′-dipyridylamine (dipyam) has been studied systematically. Only complexes with a 1:1 and 1:2 metal-to-ligand ratio are formed. Some mixed chloro–iodide and halide–PF6 compounds have also been isolated. The X-ray diffraction structures of the [Cu(dipyam)2Br2] · 2H2O (I) and the [Cu(dipyam)2Cl]2I2 · 2CH3CN (II) complexes are reported. I is a rare example of an octahedral coordination among the copper(II) halide complexes of dipyam. The two bromo atoms, which occupy the apical positions, are H-bonded to the water molecules of crystallization. II is a dimer, where each copper forms a cationic chloro-complex of approximately trigonal bipyramidal geometry, the dimerization being due to hydrogen bonds formed by the NH group of one of the two dipyams coordinated to each metal atom with the chlorine atom of the centrosymmetric cationic complex. The iodide anions are hydrogen-bonded to the NH groups of the dipyams not involved in the dimerization.  相似文献   

14.
Eight oxy-bridged dinuclear copper(II) complexes with catecholase-like sites, [Cu(L1)X]2 (HL1 = 1-diethylaminopropan-2-ol, X=N3- 1, NCO- 2, and NO2- 3), [Cu(L2)X]2 (HL2=N-ethylsalicylaldimine, X=NO3- 4, Cl- 5, N3- 6, NCS- 7), and [Cu(L3)]2(ClO4)2, 8 (HL3=N-(salicylidene)-N'-(2-pyridylaldene)propanediamine) have been prepared and characterized. The single crystal X-ray analysis show that the structures of complexes 6 and 8 are dimeric with two adjacent copper(II) atoms bridged by pairs of micro-oxy atoms from the L2 and L3 ligands. Magnetic susceptibility measurements in the temperature range 4-300 K indicate significant antiferromagnetic coupling for 4, 5 and 7 and ferromagnetic coupling for 6 between the copper(II) atoms. The catecholase activity of complexes for the oxidation of 3,5-di-tert-butylcatechol by O2 was studied and it was found that the complexes with the bond distance of Cu(II)...Cu(II) located at 2.9-3.0 A show higher catecholase activity.  相似文献   

15.
The co-ordination chemistry of some new oxamides towards Cu(II) ions was studied using various techniques: potentiometry, voltammetry, spectroscopy (UV-Vis, CD and EPR) and ESI-MS spectrometry. All tested compounds chelate the copper(II) ions with formation of 1:1 and 1:2 (metal-to-ligand ratio) complexes. The Cu(II) ions are bound by 1N, 2N or 3N nitrogen donor systems. Additionally, an unusual co-ordination to amide N-atoms without additional anchoring site is suggested. The (14)N hyperfine splitting observed for the system ox6-Cu(II) above pH 10 clearly indicates the involvement of at least three N donor atoms in the copper ion binding. Moreover, the surrounding by three amide-N and one carbonyl-O stabilizes the high oxidation state of copper(III), although such complexes are very unstable in solution.  相似文献   

16.
Two mixed-ligand copper(II) complexes [{Cu(L1)(μ1,3-N3)}{Cu(L)(μ1,3-N3)(μ1,1-N3)}]n (1) [HL1 = 1-(N-ortho-hydroxyacetophenimino)-2,2-dimethyl-aminoethane; L = 2-(dimethylamino)-ethylamine] and [{Cu(L2)(μ1,3-N3)}{Cu(L)(μ1,3-N3)(μ1,1-N3)}]n (2) [HL2 = 1-(N-5-methoxy-ortho-hydroxyacetophenimino)-2,2-dimethyl-aminoethane] have been formed upon addition of aqueous solution of sodium azide to a methanolic solution of copper nitrate trihydrate and corresponding Schiff-base ligands. The ligands, HL1 and HL2 undergo partial hydrolysis of their imine bond during the course of reaction. Both the complexes contain single end-to-end (μ1,3) azido bridged 1D infinite chains (rail) which propagate parallel to the crystallographic b-axis; neighboring chains are interconnected by pairs through double asymmetric end-on (μ1,1) azido bridges (rung) to yield a ladder-like structure. In both complexes, rungs (end-on azido bridges) do not connect copper centers of the chains like in a regular ladder; instead they connect only the alternating copper sites of the 1D chain. In a chain the coordination environment around copper(II) ions are not the same: while the {Cu(L1)(μ1,3-N3)} and {Cu(L2)(μ1,3-N3)} moieties have a penta-coordinated copper(II) center, the copper(II) ion of the neighboring {Cu(L1)(μ1,3-N3)(μ1,1-N3)} or {Cu(L2)(μ1,3-N3)(μ1,1-N3)} moiety has an octahedral coordination environment. The variable temperature (2-300 K) magnetic susceptibility measurements showed that the magnetic interaction between the metal centers in complexes 1 and 2 is dominantly antiferromagnetic. The results of magnetic model are in good agreement with the experimental data.  相似文献   

17.
Copper(II) complexes of a new bis benzimidazole diamide ligand N-picolyl-N,N′-bis(2-methylbenzimidazolyl)hexanediamide [Pic-GBHA = L2] have been synthesized and characterized. One of the compound [Cu(L2)(NO3)2] has been structurally characterized. The copper atom is bound to two benzimidazolyl nitrogen atoms, two amide carbonyl oxygen atoms and a bidentate nitrate ion, resulting in a distorted octahedral geometry. EPR spectra obtained at low temperature indicate a tetragonal geometry in the solution state. Complexes display a quasi-reversible redox wave due to the Cu(II)/Cu(I) reduction process having fairly cathodic E1/2. These Cu(II) complexes were utilized to carry out oxidation of ditertbutylcatechol (DTBC) in methanol using molecular oxygen as the oxidant in. Low temperature EPR study of the oxidation reaction implicates the formation of an active copper species with fairly low A value. The presence of picolyl groups on the ligand also serve as a proton sponge giving 2-3 times higher rates of reaction in comparison to the non-picolylated ligand, implying a role of free basic groups in the pH control of enzymatic oxidation of catechols by catechol oxidase and tyrosinase.  相似文献   

18.
The protonation equilibria of a pentadentate ligand, N,N'-(2,2'-azanediylbis(ethane-2,1-diyl))dipicolinamide ([H(2)(5555)-N]) and the complexation of this ligand with Cu(II) Ca(II), Zn(II) and Ni(II) have been studied by pH-potentiometry, (1)H NMR spectroscopy and UV-vis spectrophotometry. (1)H NMR detected the protonation of the pyridyl groups and formation of Cu[H(2)(5555)-N]H species at low pH, while amide group deprotonation at higher pH resulted in the formation of Cu[H(2)(5555)-N]H(-1) and Cu[H(2)(5555)-N]H(-2) species in solution. Potentiometric detection of protonated species was limited by the acidic nature of the pyridyl nitrogen donors. From UV-vis spectroscopy it is suggested that the amide nitrogens are coordinated. This conclusion is supported by Molecular Mechanics calculations. Water-octanol partition coefficients for the Cu(II)-[H(2)(5555)-N] system indicated that although the Cu[H(2)(5555)-N]H(-1) species is largely hydrophilic, approximately 54% of the complex goes into the organic phase. This percentage is able to promote dermal absorption of copper with a calculated penetration rate of 1.92x10(-1)cmh(-1). This was confirmed by dermal absorption studies which illustrate the role of hydrophobicity in promoting percutaneous drug administration.  相似文献   

19.
Cu(BZA)(2)(EtOH)(0.5) (1) was generated by the reaction of copper(II) hydroxide with benzoic acid (BZAH). [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) were obtained when 1 reacted with Thiabendazole (TBZH) and 2-(2-pyridyl)benzimidazole (2-PyBZIMH), respectively. [Cu(BZA)(2)(phen)(H(2)O)] (4) was isolated from the reaction of benzoic acid and 1,10-phenanthroline (phen) with copper(II)acetate dihydrate. Molecular structures of 2, 3 and 4 were determined crystallographically. 2 and 3 are hydrogen bonded dimers and trimers, respectively. The copper centres in complexes 2 and 3 are bis-chelate derivatives that have N(4)O ligation and their geometry is very similar being approximately square-pyramidal. However whereas in complex 2 both TBZH ligands are neutral in 3 one of the 2-PyBZIMH chelators is deprotonated on each copper. The structural results for 4 represent a re-examination of this crystallographically known compound for which no hydrogen atom coordinates have been previously reported. It crystallises as a hydrogen bonded dimmer and is a mono-chelate of phen with each copper centre possessing N(2)O(3) ligation and square pyramidal geometry. The catalase and superoxide dismutase (SOD) activities of the four complexes along with those of the known phenanthroline complexes [Cu(mal)(phen)(2)] and [Cu(phendione)(3)](ClO(4))(2) (malH(2)=malonic acid and phendione=1,10-phenanthroline-5,6-dione) were investigated. Complexes 1-4, the metal free ligands and a simple copper(II) salt were assessed for their cancer chemotherapeutic potential against the hepatocellular carcinoma (Hep-G(2)) and kidney adenocarcinoma (A-498) cell lines. TBZH, 2-PyBZIMH and benzoic acid when uncoordinated to a metal centre offer poor chemotherapeutic potential. copper(II) benzoate is significantly more active than the free acid. The bis-chelate derivatives [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) elicit a significant cytotoxic response to the cancer cell lines tested. Replacing TBZH and 2-PyBZIMH with phen to give [Cu(BZA)(2)(phen)(H(2)O)] (4) does not significantly increase the anti-cancer activity.  相似文献   

20.
Ternary copper(II) complexes [CuLL'](ClO(4)), where HL is NSO-donor Schiff base (2-(methylthio)phenyl)salicylaldimine and L' is NN-donor phenanthroline bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and 2,9-dimethyl-1,10-phenanthroline (dmp), are prepared and structurally characterized by X-ray crystallography. The complexes have a distorted square-pyramidal (4+1) CuN(3)OS coordination geometry. While [CuL(phen)](ClO(4)) and [CuL(dpq)](ClO(4)) show axial sulfur ligation, [CuL(dmp)](ClO(4)) has the sulfur bonded at the equatorial site. The one-electron paramagnetic complexes exhibit axial electron paramagnetic resonance (EPR) spectra in dimethylformamide glass at 77 K. The complexes are redox active and a quasireversible electron transfer process near 0.0 V vs saturated calomel electrode (SCE) in DMF-Tris buffer (1:4 v/v at pH 7.2) involving Cu(II)/Cu(I) couple is observed for the phen and dpq complexes. The dmp complex exhibits an irreversible reduction process forming bis(dmp)copper(I) species. A profound effect of the substituents of the phenanthroline bases is observed on the binding of the complexes to the calf thymus (CT) and in the cleavage of supercoiled (SC) pUC19 DNA. The phen and dpq complexes show DNA cleavage activity in presence of mercaptopropionic acid (MPA). The dmp complex is cleavage inactive in presence of MPA. All the complexes show photocleavage activity when irradiated with a monochromatic UV light of 312 nm. The dpq complex also cleaves SC DNA on visible light irradiation at 436, 532 and 632.8 nm but with a longer exposure time and higher complex concentration. The cleavage reactions in presence of MPA are found to involve hydroxyl radical. The photocleavage reactions are found to occur under aerobic conditions showing an enhancement of cleavage in D(2)O and inhibition with azide addition suggesting formation of singlet oxygen as a reactive species. The roles of sulfur of the Schiff base as photosensitizer and the phenanthroline bases as minor groove binder, and their influence on the photocleavage activity are discussed. The quinoxaline ligand exhibits significant photosensitizing effect assisted by the copper(II) center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号