首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first [Pd(Ln)2(ox)] xH2O oxalato(ox) complexes involving 2-chloro-N6-(benzyl)-9-isopropyladenine (L1; complex 1), 2-chloro-N6-(4-methoxybenzyl)-9-isopropyladenine (L2; 2), 2-chloro-N6-(2,3-dimethoxybenzyl)-9-isopropyladenine (L3; 3), 2-chloro-N6-(2,4-dimethoxybenzyl)-9-isopropyladenine (L4; 4), and 2-chloro-N6-(4-methylbenzyl)-9-isopropyladenine (L5; 5) have been synthesized by the reactions of potassium bis(oxalato)palladate(II) dihydrate, [K2Pd(ox)2]·2H2O, with the mentioned organic compounds (H2ox = oxalic acid; x = 0 for 1-3 and 5 or 2 for 4). Elemental analyses (C, H, N), FTIR, Raman and NMR (1H, 13C, 15N) spectroscopies, conductivity measurements and thermal studies (thermogravimetric and differential thermal analyses, TG/DTA) have been used to characterize the prepared complexes. The molecular structures of [Pd(L2)2(ox)] (2) and [Pd(L5)2(ox)]·L5·Me2CO (5·L5·Me2CO) have been determined by a single crystal X-ray analysis. The geometry of these complexes is slightly distorted square-planar with two appropriate Ln (n = 2 or 5) molecules mutually arranged in the head-to-head (2) or head-to-tail (5) orientation. The Ln ligands are coordinated to the central Pd(II) ion via the N7 atoms. The same conclusions regarding the binding properties of L1-L5 ligands can be made based on multinuclear NMR spectra. In vitro cytotoxicity of the complexes 1-5 has been evaluated against human chronic myelogenous leukaemia (K562) and human breast adenocarcinoma (MCF7) cancer cell lines. Significant cytotoxicity has been determined for the complexes 3 (IC50 = 6.2 μM) and 5 (IC50 = 6.8 μM) on the MCF7 cell line, which is even better than that found for the well-known and widely-used platinum-bearing antineoplastic drugs, i.e. oxaliplatin and cisplatin.  相似文献   

2.
The syntheses and structures of homo- and heteronuclear biscarbene complexes with bithiophene spacers were investigated. The complexes were synthesized by lithiation of bithiophene followed by metallation using combinations of the metal precursors MnMeCp(CO)3, W(CO)6, Mo(CO)6 and Cr(CO)6, after which the reaction was quenched with triethyloxonium tetrafluoroborate. This classical Fischer method yielded monocarbene complexes, [MLnC(OEt)C4H2S-C4H3S], ([MLn] = Cr(CO)51a, W(CO)52a or MnMeCp(CO)23a), homonuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)MLn], ([MLn] = Cr(CO)51b, W(CO)52b or MnMeCp(CO)23b) and heteronuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)M′Ln] (1d: [MLn] = Cr(CO)5 and [M′Ln] = W(CO)5; 1e: [MLn] = MnMeCp(CO)2 and [M′Ln] = Cr(CO)5; 1f: [MLn] = Cr(CO)5 and [M′] = Mo(CO)5); 2d: [MLn] = MnMeCp(CO)2 and [M′Ln] = W(CO)5; 3c: [MLn] = MnMeCp(CO)2 and [M′Ln] = Mo(CO)5). Electron density calculations with the gaussian03 software package of 1e revealed a polar rod with the negative pole towards the chromium carbene side, whereas the biscarbenes 1d and 1b showed very little polarity. By-products resulting from activation of the carbene moieties in homonuclear biscarbene complexes included (i) ester-type complexes of the form [MLnC(OEt)C4H2S-C4H2SC(O)OEt], ([MLn] = Cr(CO)51c or W(CO)52c), formed in situ in the reaction of 1b and 2b, (ii) the organic bis-ester compound [EtOC(O)C4H2S-C4H2SC(O)OEt] 4, where both metal moieties had been substituted by oxygen and (iii) the carbon-carbon coupled dimeric bithienyl compound [C4H3S-C4H2SC(O)C(O)C4H2S-C4H3S] 5. By-products obtained from heteronuclear biscarbene reactions contain the former diketo compound (or a derivative) as spacer between two metal carbonyl fragments and have the general formula [MLnC(OEt)C4H2S-C4H2SCR-CR′C4H2S-C4H2SC(OEt)MLn] (5a: [M] = Cr(CO)5, R = OH, R′ = OEt; 5b: [M] = W(CO)5, R = R′ = O; 5c: [M] = Mo(CO)5, R = R′ = O). Reaction of 1d, 1e and 1f with hex-3-yne resulted in the formation of benzannulated products 6a, 6b and 6c. All novel complexes were fully characterized using various spectroscopic techniques. The crystal structures of 1b, 2a and 5 are reported.  相似文献   

3.
A new type of multidentate ligand with both acetylacetonate and bis(2-pyridyl) units on the 1,3-dithiole moiety, 3-[2-(dipyridin-2-yl-methylene)-5-methylsulfanyl-[1,3]dithiol-4-ylsulfanyl]-pentane-2, 4-dione (L), has been prepared. Through reactions of the ligand with Re(CO)5X (X = Cl, Br), new rhenium(I) tricarbonyl complexes ClRe(CO)3(L) (2) and BrRe(CO)3(L) (3), have been obtained. With the use of 2 or 3 as the precursors, the further reactions with (TpPh2)Co(OAc)(HpzPh2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate); HpzPh2 = 3,5-diphenyl-pyrazole) or M(OAc)2(M = Mn, Zn), afford four new heteronuclear complexes: ClRe(CO)3(L)Co(TpPh2) (4), BrRe(CO)3(L)Co(TpPh2) (5), [ClRe(CO)3(L)]2Mn(CH3OH)2 (6) and [ClRe(CO)3(L)]2Zn(CH3OH)2 (7), respectively. Crystal structures of complexes 2 and 4-7 have been determined by X-ray diffraction. Their absorption spectra, photoluminescence and magnetic properties have been studied.  相似文献   

4.
Complexes of the type (η4-BuC5H5)Fe(CO)2(P) (P = PPh2Py 3, PPhPy24, PPy35; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of 3 with M(CO)3(EtCN)3 (M = Mo, 6a; W, 6b), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the endo-C-H of (η4-BuC5H5). This results in a bridged hydrido heterodimetallic complex [(η5-BuC5H4)Fe(CO)(μ-P,N-PPh2Py)(μ-H)M(CO)4] (M = Mo, 7a, 81%; W, 7b, 76%). The reaction of 4 or 5 with 6a,b did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of 4 with M(CO)4(EtCN)2 (M = Mo, 9a; W, 9b) produced heterodimetallic complexes [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′-PPhPy2)M(CO)4] (M = Mo, 10a, 81%; W, 10b, 83%). Treatment of 5 with 6a,b gave [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′,N″-PPy3)M(CO)3] (M = Mo, 12a, 96%; W, 12b, 78%).  相似文献   

5.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

6.
Reactions of FeII, CoII, NiII, and ZnII salts with 6-quinolinecarboxylic acid (HL) under the hydrothermal conditions afford three monomeric complexes [M(L)2(H2O)4] (M = FeII for 1, CoII for 2, and NiII for 3) and a 1-D polymeric species {[Zn(L)2(H2O)] · H2O}n (4). The crystal structures of the ligand HL and these four complexes have been determined by using the X-ray single-crystal diffraction technique. The results suggest that complexes 1-3 are isostructural, displaying novel 3-D pillar-layered networks through multiple intermolecular hydrogen bonds, whereas in coordination polymer 4, the 1-D comb-like coordination chains are extended to generate a hydrogen-bonded layer, which is further reinforced via aromatic stacking interactions. Solid-state properties such as thermal stability and fluorescence emission of the polymeric ZnII complex 4 have also been investigated.  相似文献   

7.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

8.
In order to further understand the coordination chemistry of diazamesocyclic systems, a series of mononuclear NiII complexes with 1,4-diazacycloheptane (DACH) functionalized by additional imidazole or pyridine donor pendants, including [NiL1](ClO4)2 · H2O (1), [NiL1Cl](ClO4) (2), [NiL2Cl](ClO4) · CH3OH (3), [NiL2Cl][NiL2](ClO4)3 (4) and [NiL3](ClO4)2 (5), where L1 = 1,4-bis(N-1-methylimidazol-2-yl-methyl)-1,4-diazacycloheptane, L2 = 1,4-bis(pyridyl-2-yl-methyl)-1,4-diazacycloheptane, and L3 = 1,4-bis-(imidazol-4-yl-methyl)-1,4-diazacycloheptane, have been prepared and characterized. A detailed study on the solid structures and solution spectra of these complexes indicates that tetradentate ligands L1, L2 and L3 would lead to new NiII complexes with different coordination environments in the solid states and solution. The N-methyl substituted imidazole functionalized ligand L1 forms green compound 2 and yellow product 1; while the pyridine functionalized ligand L2 affords red product 4 and green complex 3; the ligand L3 results in only one stable mononuclear NiII product 5. The solution behaviors of these interesting compounds were also investigated by UV-Vis technique.  相似文献   

9.
Reactions of H2L [H2L = N,N′-bis(3-methoxysalicylidene)propane-1,2-diamine] and Ln(NO3)3 · 6H2O give rise to two different mononuclear 4f complexes, namely, {[(H2L)La(NO3)3(MeOH)] · H2O}n (1) and [(H2L)Nd(NO3)3] (2). Further additions of Cu(Ac)2 · H2O to the mononuclear 4f complexes yield expected heterodinuclear Cu-4f complexes [LCu(Me2CO)Ln(NO3)3] (3, Ln = Nd; 4, Ln = Eu; 5, Ln = Dy). Complex 1 is a unique 1D polymeric chain structure, and 2 is one of the few structurally characterized discrete hexadentate salen-type mononuclear 4f complexes. Complexes 3-5 are similar to their analogues. However, they are prepared by a reversed synthetic route in contrast to their isomorphic complexes. Electrochemical behavior of heterodinuclear Cu-4f complexes 3-5 has been examined by cyclic voltammetry in acetonitrile. The redox potential of heterodinuclear Cu-4f complexes 3-5 shows significant anodic shift comparing to that of mononuclear copper complex (LCu). A tendency of anodic shift was observed in a sequence of 3 < 4 < 5. This results from the modulating effect of coordination geometry around Cu(II) ion on redox potential.  相似文献   

10.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

11.
Reactions of potassium bis(oxalato)palladate dihydrate, K2[Pd(ox)2]·2H2O, with two molar equivalents of N6-(benzyl)-9-isopropyladenine-based organic molecules (L1-7), i.e. 2-chloro-N6-(2-methoxybenzyl)-9-isopropyladenine (L1), 2-chloro-N6-(3-methoxybenzyl)-9-isopropyladenine (L2), 2-chloro-N6-(3,5-dimethoxybenzyl)-9-isopropyladenine (L3), 2-(1-ethyl-2-hydroxyethylamino)-N6-(benzyl)-9-isopropyladenine (L4), 2-(1-ethyl-2-hydroxyethylamino)-N6-(2-methoxybenzyl)-9-isopropyladenine (L5), 2-(1-ethyl-2-hydroxyethylamino)-N6-(3-methoxybenzyl)-9-isopropyladenine (L6) and 2-(1-ethyl-2-hydroxyethylamino)-N6-(4-methoxybenzyl)-9-isopropyladenine (L7), provided a series of seven palladium(II) oxalato (ox) complexes of the general formula [Pd(ox)(L1-7)2nH2O (1-7; n = 0 for 4, 5 and 7, ¾ for 1 and 2, 1 for 6, and 3 for 3). The compounds were characterized by elemental analysis, IR, Raman, 1H, 13C and 15N{1H} NMR spectroscopy, ESI+ mass spectrometry, molar conductivity and TG/DTA thermal analysis. The geometry of [Pd(ox)(L2)2] (2) was optimized on the B3LYP/6-311G∗/LANL2DZ level of theory. The complexes 4-7 represent the first palladium(II) oxalato complexes with a PdN2O2 donor set, which involve highly potent purine-based cyclin-dependent kinase (CDK) inhibitors (L4-7) as carrier N-donor ligands. The selected complexes 1, 3-5 and 7 were tested by an MTT assay for their in vitro cytotoxic activity against human osteosarcoma (HOS) cancer cell line. The highest activity was found for the complexes 5 (IC50 = 34.9 μM) and 7 (IC50 = 39.2 μM).  相似文献   

12.
The first FeIII complexes 1-6 with cyclin-dependent kinase (CDK) inhibitors of the type [Fe(Ln)Cl3nH2O (n = 0 for 1, 1 for 2, 2 for 3-6; L1-L6 = C2- and phenyl-substituted CDK inhibitors derived from 6-benzylamino-9-isopropylpurine), have been synthesized and characterized by elemental analysis, IR, 57Fe Mössbauer, 1H and 13C NMR, and ES+ mass spectroscopies, conductivity and magnetic susceptibility measurements, and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The study revealed that the compounds are mononuclear, tetrahedral high-spin (S = 5/2) FeIII complexes with an admixture of an S = 3/2 spin state originating probably from five-coordinated FeIII ions either connecting with a bidentate coordination mode of the CDK inhibitor ligand or relating to the possibility that one crystal water molecule enters the coordination sphere of the central atom in a portion of molecules of the appropriate complex. Nearly spin-only value of the effective magnetic moment (5.82 μeff/μB) was determined for compound 1 due to absence of crystal water molecule(s) in the structure of the complex. Based on NMR data and DFT calculations, we assume that the appropriate organic ligand is coordinated to the FeIII ion through the N7 atom of a purine moiety. The cytotoxicity of the complexes was tested in vitro against selected human cancer cell lines (G-361, HOS, K-562 and MCF-7) along with the ability to inhibit the CDK2/cyclinE kinase. The best cytotoxicity (IC50: 4-23 μM) and inhibition activity (IC50: 0.02-0.09 μM) results have been achieved in the case of complexes 2-4, and complexes 3, 4 and 6, respectively. In addition, the X-ray structure of 2-chloro-6-benzylamino-9-isopropylpurine, i.e. a precursor for the preparation of L1, L4 and L5, is also described.  相似文献   

13.
The dinuclear bis(6-X-pyridin-2-olato) ruthenium complexes [Ru2(μ-XpyO)2(CO)4(PPh3)2] (X = Cl (4B) and Br (5B)), [Ru2(μ-XpyO)2(CO)4(CH3CN)2] (X = Cl (6B), Br (7B) and F (8B)) and [Ru2(μ-ClpyO)2(CO)4(PhCN)2] (9B) were prepared from the corresponding tetranuclear coordination dimers [Ru2(μ-XpyO)2(CO)4]2 (1: X = Cl; 2: X = Br) and [Ru2(μ-FpyO)2(CO)6]2 (3) by treatment with an excess of triphenylphosphane, acetonitrile and benzonitrile, respectively. In the solid state, complexes 4B-9B all have a head-to-tail arrangement of the two pyridonate ligands, as evidenced by X-ray crystal structure analyses of 4B, 6B and 9B, in contrast to the head-to-head arrangement in the precursors 1-3. A temperature- and solvent-dependent equilibrium between the yellow head-to-tail complexes and the red head-to-head complexes 4A-7A and 9A, bearing an axial ligand only at the O,O-substituted ruthenium atom, exists in solution and was studied by NMR spectroscopy. Full 1H and 13C NMR assignments were made in each case. Treatment of 1 and 2 with the N-heterocyclic carbene (NHC) 1-butyl-3-methylimidazolin-2-ylidene provided the complexes [Ru2(μ-XpyO)2(CO)4(NHC)], X = Cl (11A) or Br (12A). An XRD analysis revealed the head-to-head arrangement of the pyridonate ligands and axial coordination of the carbene ligand at the O,O-substituted ruthenium atom. The conversion of 11A and 12A into the corresponding head-to-tail complexes was not possible.  相似文献   

14.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

15.
When the iron sulfide complexes (μ-Sx)[CpFe(CO)2]2 (x = 2, 3) are treated with O-alkyl oxalyl chlorides ROCOCOCl the complexes CpFe(CO)2SCOCO2R (1) [R = Me (a), Et (b)] are obtained. Similarly, the complexes CpFe(CO)2SeCOCO2R (2) are obtained from the analogous iron selenide (μ-Se)[CpFe(CO)2]2 reaction with the same reagents. Treatment of the iron selenide with half equivalent of oxalyl chloride produces the dimeric complex [CpFe(CO)2SeCO]2 (3). The new complexes, 1, 2 and 3, have been characterized by elemental analyses, IR and 1H NMR spectroscopy. The solid state structures of 1a, 2a, 3 and [CpFe(CO)2SCO]2 (4) were determined by an X-ray crystal structure analysis.  相似文献   

16.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

17.
Treatment of Rh(acac)(CO)2 (acac = acetoacetonate) with perchloric acid followed by addition of an α-diimine (α-diimine = 1,4-bis(Ar)-2,3-dimethyl-1,4-diaza-1,3-butadiene, Ar = 3,5-dimethylphenyl, 1; 3,5-di-tert-butylphenyl, 2; and 3,4,5-trimethoxyphenyl, 3; phenyl, 4; and 4-chlorophenyl, 5) generates a series of complexes of the type [Rh(α-diimine)(CO)2][ClO4] 6-10 with varying electronic properties of the supporting diimine ligand. X-ray crystal structures have been determined for the α-diimine ligands 1-5, and complexes 6, 8, and 10.  相似文献   

18.
The reaction of 1-(2-hydroxyethyl)-3,5-dimethylpyrazole (HL) with anhydrous metal(III) halides (M = Al, Ga, In and Cr) results in the isolation of four novel dinuclear complexes [Al(μ-L)Cl2]2 (1), [Ga(μ-L)Cl2]2 (2), [In(μ-L)Br2(H2O)]2·2thf (3) and [Cr(μ-L)Cl2(H2O)]2·1.5thf (4) in good yields. The new complexes have been characterized with the aid of analytical and spectroscopic studies. A single crystal X-ray structure determination in each case confirms the dimeric structure for all the complexes in the solid-state. The pyrazole ethanol ligand binds to the metal through both pyrazole nitrogen and bridging alkoxide oxygen terminals with the formation of a central M2O2 core involving the ethoxide anion. The metal(III) center is pentacoordinated in compounds 1 and 2, while it is hexacoordinated in compounds 3 and 4.  相似文献   

19.
Three distinct coordination complexes, viz. {[Cu(μ-L)2] · (H2O)4}n (1), [Ni(L)2(CH3OH)2] (2), and [Zn(L)2(H2O)2] · (H2O)2 (3), have been prepared by the reactions of metal nitrates with isoquinoline-3-carboxylic acid (HL). X-ray single-crystal diffraction suggests that 1 is a 1D chain coordination polymer in which the CuII ions are connected by carboxylates, whereas complexes 2 and 3 represent discrete mononuclear species. In all the cases, the coordination entities are further organized via hydrogen-bonding interactions to generate multifarious supramolecular networks. Remarkably, a well-resolved 1D water morphology is observed for the first time in the crystalline lattice of 1 along [1 0 0], which consists of edge-sharing tetrameric subunits and stabilized by the metal-organic host surroundings.  相似文献   

20.
Two new mononuclear spin-crossover iron(II) complexes, [FeL2(NCS)2] · H2O (1) and [FeL2(NCSe)2] (2), have been synthesized from the reaction of the versatile ligand 4,5-bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole (L), Fe(ClO4)2, and KNCX (X = S/Se). Reactions of L with CuII or CoII salts afford one mononuclear complex [CuL(hfac)2] · CH3OH (hfac = hexafluoroacetylacetonate) (3), one dinuclear complex [(CuLCl)2(μ-Cl)2] · CH3OH (4), and two 1D chain species, [CuL2]n(BF4)2n (5) and [CoL2]n(ClO4)2n · 2nCH2Cl2 (6). The crystal structures of complexes 1 and 3-6 have been determined by X-ray crystallography. Short intermolecular S?S contacts between neighboring 1D arrays are observed in 5 and 6, which lead to the formation of the 2D structure. The magnetic properties are studied, and antiferromagnetic couplings between the CuII centers across the chloride bridges have been found in 4 (J = 2.04 cm-1). Spin-crossover behaviors between high and low spin states are observed at T1/2 = 80 K for 1 and T1/2 = 300 K for 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号