首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

2.
The synthesis and properties of the copper(II) complex with dimethylaminomethylphosphine oxide as a ligand will be presented. The complex, with the formula [Cu(NO3)2(POC3H10N)2] 1, has been characterized by elemental analysis, IR spectroscopy, SQUID and X-ray measurements. The X-ray structure was determined for the complex 1 and for the ligand dimethylaminomethylphosphine oxide (DMAO) 2. The single crystal X-ray structure of 1 shows that in the crystal the copper ions form distorted octahedral environment, consisting of two oxygen and two nitrogen atoms from the DMAO ligand. Additionally, one oxygen atom of each anion is semi-coordinated to the copper ion. The solid state magnetic measurements show that the complex 1 is paramagnetic with weak antiferromagnetic interactions in low temperatures.  相似文献   

3.
The reactions of Ln(NO3)3 · xH2O, CoSO4 · 7H2O or ZnSO4 · 6H2O and 2-pyridylphosphonic acid under hydrothermal conditions result in heterometallic phosphonate compounds with formula [Ln2M3(C5H4NPO3)6] · 4H2O (Ln2M3; M = CoII or ZnII; Ln = LaIII, CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII). These compounds are isostructural and crystallize in a chiral cubic space group I213. Each structure contains the {LnO9} polyhedra and {MN2O4} octahedra which are connected by edge-sharing to form an inorganic open-framework structure with a 3-connected 10-gon (10, 3) topology. The nature of LnIII-CoII magnetic interactions in Ln2Co3 is investigated by a comparison with their LnIII-ZnII analogues. It is found that the LnIII-CoII interaction is weak antiferromagnetic for Ln = Ce and ferromagnetic for Ln = Sm, Gd, Tb and Dy. In the cases of Ln = Pr, Nd and Eu, no significant magnetic interaction is observed.  相似文献   

4.
Short-bite aminobis(phosphonite) containing olefinic functionalities, PhN{P(OC6H3(OMe-o)(C3H5-p))2}2 (1) was synthesized by reacting PhN(PCl2)2 with eugenol in the presence of triethylamine. The ligand 1 acts as a bidentate chelating ligand toward metal complexes [M(CO)4(C5H10NH)2] forming [M(CO)42-PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (M = Mo, 2; W, 3). The reaction between 1 and [CpFe(CO)2]2 leads to the cleavage of one of the P-N bonds due to the metal assisted hydrolysis to give a mononuclear complex [CpFe(CO){P(O)(OC6H3(OMe-o)(C3H5-p))2}{PhN(H)(P(OC6H3(OMe-o)(C3H5-p))2)}] (4). Treatment of 1 with gold(I) derivative, [AuCl(SMe2)] resulted in the formation of a dinuclear complex, [(AuCl)2{PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (5) with a Au···Au distance of 3.118(2) Å indicating the possibility of aurophilic interactions. An equimolar reaction between 1 and [Ru(η6-p-cymene)Cl2]2 afforded a tri-chloro-bridged bimetallic complex [(η6-p-cymene)Ru(μ-Cl)3Ru{PhN(P(OC6H3(OMe-o)(C3H5-p))2)2}Cl] (6). The crystal structures of 1-3 and 5 were established by single crystal X-ray diffraction studies.  相似文献   

5.
The hydrothermal reaction of a solution of Ni(CH3CO2)2 · 4H2O, MoO3, tetra-4-pyridylpyrazine, H2O3PCH3, and HF at 200 °C for 96 h yields orange crystals of [Ni(tpyrpyz)2]2[Mo4O12F2][Mo6O17] · 2H2O (1 · 2H2O). The structure consists of discrete {Ni(tpyrpyz)2}2+ cations and {Mo6O19}2− and {Mo4O12F2}2− anionic clusters. The hexamolybdate is the well-documented octahedron of octahedra, that is, six {MoO6} octahedra in a compact edge-sharing arrangement. The novel oxyfluoride cluster {Mo4O12F2}2− features two {MoO4F2} octahedra, sharing the edge defined by the fluoride ligands; the octahedral Mo sites corner-share to two {MoO4} tetrahedra in the μ2-O, O bridging mode.  相似文献   

6.
Two new tetrahedral tungsten cyanide cluster compounds, [Cu(dien)]3[W4Te4(CN)12] · 9H2O (1) (dien=diethylenetriamine) and [Ni(en)(NH3)]3[W4Se4(CN)12] · 7.5H2O (2) (en=ethylenediamine), were synthesized by treating aqueous solutions of the saltlike cluster compound K6[W4Te4(CN)12] · 5H2O/K6[W4Se4(CN)12] · 6H2O with copper(II)/nickel(II) chloride in aqueous ammonia containing dien/en. The cyano-bridged layered coordination polymeric compounds were characterized by single-crystal X-ray diffraction analysis: monoclinic, space group P21 for 1; trigonal, space group for 2. Structures of 1 and 2 consist of infinite neutral layers of cluster components {W4Te4(CN)12}/{W4Se4(CN)12} connected, one another by {Cu(dien)} or {Ni(en)(NH3)} fragments, respectively.  相似文献   

7.
Four novel isostructural lanthanide phosphonate compounds with formula Ln2(O2CCH2PO3)2(H2O)3 · H2O [Ln = La (1), Pr (2), Nd (3), Sm (4)] have been prepared through hydrothermal reactions of phosphonoacetate acid and lanthanide nitrates. All show layered structures made up of {LnO9} polyhedra and {CPO3} tetrahedra with the lattice water molecules locating between the layers. Within the layer, chains of edge-sharing {LnO9} polyhedra are connected via corner-sharing by phosphonate oxygens forming a two-dimensional -Ln-O- linkage. Thermal analyses and XRD measurements reveal that the framework structures can be maintained up to 400 °C.  相似文献   

8.
The preparation, crystal structures and magnetic properties of three copper(II) compounds of formulae [Cu2(dmphen)2(dca)4] (1), [Cu(dmphen)(dca)(NO3)]n (2) and [Cu(4,4-dmbpy)(H2O)(dca)2] (3) (dmphen=2,9-dimethyl-1,10-phenanthroline, dca=dicyanamide and 4,4-dmbpy=4,4-dimethyl-2,2-bipyridine) are reported. The structure of 1 consists of discrete copper(II) dinuclear units with double end-to-end dca bridges whereas that of 2 is made up of neutral uniform copper(II) chains with a single symmetrical end-to-end dca bridge. Each copper atom in 1 and 2 is in a distorted square pyramidal environment: two (1) or one (2) nitrile-nitrogen atoms from bridging dca groups, one of the nitrogen atoms of the dmphen molecule (1 and 2) and either one nitrile-nitrogen from a terminal dca ligand (1) or a nitrate-oxygen atom (2) build the equatorial plane whereas the second nitrogen atom of the heterocyclic dmphen fills the axial position (1 and 2). The copper-copper separations through double (1) and single (2) end-to-end dca bridges are 7.1337(7) (1) and 7.6617(7) (2). Compound 3 is a mononuclear copper(II) complex whose structure contains two neutral and crystallographically independent [Cu(4,4-dmbpy)(H2O)(dca)2] molecules which are packed in two different layer arrangements running parallel to the bc-plane and alternating along the a-axis. The copper atoms in both molecules have slightly distorted square pyramidal surroundings with the two nitrogen atoms of the 4,4-dmbpy ligand and two dca nitrile-nitrogen atoms in the basal plane and a water oxygen in the apical position. A semi co-ordinated dca nitrile-nitrogen from a neighbour unit [2.952(6) Å for Cu(2)-N] is in trans position to the apical water molecule in one of the two molecules, this feature representing part of the difference in supramolecular connections in the alternating layers referred to above. Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K reveal the occurrence of weak antiferromagnetic interactions through double [J=−3.3 cm−1 (1), ] and single [J=−0.57 cm−1 (2), ] dca bridges and across intermolecular contacts [θ=−0.07 K (3)].  相似文献   

9.
The complexes [W(X)Cl3(HO2CC6H4NH-2)] [X = O (1), NPh (2)] have been obtained by reaction of either [WOCl4] or [W(NPh)Cl4(Et2O)] with anthranilic acid {1,2-(NH2)(CO2H)C6H4}, respectively. The X-ray crystal structures reveal pseudo-octahedral metal centres, each with a mer-arrangement of chlorines and a chelating acid/amide ligand derived from anthranilic acid. The acid group of this chelate ligand is trans to either the oxo or organoimido functionality.  相似文献   

10.
The reactions of the Keplerate super cluster [Mo132O372(CH3CO2)30(H2O)72]42− with a Cu(II) source and an organonitrogen donor in methanol/DMF solutions yielded a series of bimetallic organic-inorganic oxide hybrid materials, including the molecular species [Cu(phen)2MoO4] (1) and [{Cu(terpy)}2(MoO4)2] (2) and a series of materials constructed from the tetranuclear building block {Mo4O10(OMe)6}2−: the molecular [{Cu2(phen)2(O2CCH3)2 (MeOH)}Mo4O10(OMe)6] (3), [{Cu(terpy)(O2CCH3)}2Mo4O10(OMe)6] (4) and [{Cu(terpy)Cl}2Mo4O10(OMe)6] (5), the one-dimensional phases [{Cu(bpy)(HOMe)2}Mo4O10(OMe)6] (6), [{Cu(bpy)(DMF)2}Mo4O10(OMe)6] (7), [{Cu(bpa)(DMF)2}Mo4O10(OMe)6] (8), [{Cu(phen)(DMF)2}Mo4O10(OMe)6] (9) and [{CuCl(dpa)}2Mo4O10(OMe)6] (10), and the two-dimensional material [{Cu2(DMF)2(pdpa)}{Mo4O10(OMe)6}2] (11). When methanol is replaced by the tridentate alkoxide tris-methoxypropane (trisp), the {Mo2O4(trisp)2}2− cluster building block is observed for [Cu(phen)Mo2O4(trisp)2] (12), [Cu(bpa)(DMF)Mo2O4(trisp)2] (13) and [{Cu(bpy)(NO3)}2Mo2O4(trisp)2] (14).  相似文献   

11.
Hydrothermal chemistry was used to prepare the bimetallic organic-inorganic hybrid oxide [Cu(I)Cu(II)2(trz)2Mo4O13(OH)] · 6H2O (1 · 6H2O). The structure consists of chains linked through into a three-dimensional framework. The structures of the simple metal-triazole phases [MoO3(Htrz)0.5] (2) and [Cu(trz)] (3) are also reported. Compound 2 is two-dimensional, constructed from corner-sharing {MoO5N} octahedra. Compound 3 consists of {Cu(trz)}n chains linked through weak Cu?Cu contacts into a virtual layer.  相似文献   

12.
Five novel bpca-based Cu(II) polynuclear coordination compounds [Hbpca = bis(2-pyridylcarbonyl)amine] were prepared using the [Cu(bpca)(H2O)2](NO3)·2H2O (1) building block and characterized by single crystal X-ray diffraction. We have also isolated and characterized two new crystal forms of the starting species, with lower water contents. Three of the new products are dinuclear complexes obtained by reacting 1 with different rigid or flexible spacer ligands: [Cu2(bpca)2(H2O)2(bipy)](NO3)2·6H2O (2) (bipy = 4,4′-bipyridine) and [Cu2(bpca)2(H2O)2(bpete)](NO3)2·xH2O (3) [bpete = (E)-1,2-di(pyridin-4-yl)ethane] are linear dumbbell-like species with Cu?Cu separations of 11.075 and 13.275 Å, respectively. The third dinuclear compound, [Cu2(bpca)2(H2O)2(bpx)](NO3)2·8H2O (4) [bpx = 1,4-bis((1H-pyrazol-1-yl)methyl)benzene], with the flexible bpx ligand, assumes an unusual S-shaped conformation and shows a quite shorter Cu?Cu contact of 6.869 Å only. We have also obtained a chiral 1D neutral polymeric complex, [Cu3(bpca)2(bipy)3(NO3)4]·6H2O (5), that shows a central linear -Cu-bipy-Cu- chain, with all these Cu atoms connected to two lateral [Cu(bpca)(NO3)2] groups on two opposite sides by means of bipy spacers. An unprecedented type of Cu(II) neutral trinuclear complex, [Cu3(bpca)2(H2O)2(NO3)2] (6), was obtained which has a centrosymmetric structure with two external [Cu(bpca)(NO3)2] units chelating on a central copper atom via the two pairs of carbonyl groups of the bpca ligands. The central metal is octahedral with two axial water molecules, while the two lateral Cu atoms are in square pyramidal geometry; the Cu?Cu separation is 5.205 Å. The magnetic properties of 6 have been rationalized through a ferromagnetic coupling between the central metal ion and the peripheral ones which are coupled by a smaller antiferromagnetic interaction. DFT calculations have been also performed in order to give a better insight into magnetic interactions.  相似文献   

13.
Three new thiodiacetato-Cu(II) chelates have been synthesized and studied by X-ray crystallography and by thermal, spectral and magnetic methods. [Cu(tda)]n (1) is a 3D-polymer with a pentadentate tda, which acts with a fac-O2 + S(apical)-tridentate chelating conformation and as a twofold anti, syn-μ-η11 carboxylate bridge. In its square pyramidal Cu(II) coordination (type 4 + 1) four O(carboxylate) donors define a close regular square base, but the Cu-S(apical) bond deviates 27.4° from the perpendicular to the mean basal plane. Each anti,syn-bridging carboxylate group exhibits two C-O (average 1.26(1) Å) and two Cu-O bonds (average 1.958(7) Å), which are very similar in length to each other. In contrast, the mixed-ligand complexes of [Cu(tda)(Him)2(H2O)] (compound 2, distorted octahedral, type 4 + 1 + 1) and [Cu(tda)(5Mphen)] · 2H2O (compound 3, distorted square pyramidal, type 4 + 1) have molecular structures and the tda ligand displays only a fac-O2 + S(apical)-tridentate conformation. The Cu-S(apical) bond lengths (2.570(1), 2.623(1) or 2.573(1) Å for 1, 2 or 3, respectively) are shorter than those previously reported for closely related Cu(II)-tda derivatives. The different tda ligand roles in their Cu(II) derivatives are rationalized on the basis of crystal packing forces driving in the absence or presence of auxiliary ligands (with two or three N-donor atoms).  相似文献   

14.
Three compounds based on the polyoxometalate building block [V12B18O60H6], (Na)10[(H2O)V12B18O60H6]·18H2O (1), Na8[Cu(en)2]2[V12B18O60H6](NO3)2·14.7H2O (2), Na7[Cu(en)2]2[V12B18O60H6](NO3)·15.5H2O (3), (en = ethylenediamine), have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis and TGA. Compound 1 consists of polyoxovanadium borate [V12B18O60H6] clusters which are surrounded by sodium countercations in octahedral sites, stabilized by electrostatic interactions with the oxygen atoms of both vanadium and boron centres. However, compounds 2 and 3 correspond to more complicated structures, constructed from the same polyoxometalate clusters, which are interconnected by [Cu(en)2]2+ moieties via the terminal oxygen atoms of the polyoxoanions, generating one-dimensional structures. The functionalization of this polyoxovanadium borate cluster has been obtained by the use of [Cu(en)2]2+ complex ions, thus demonstrating the capacity of the terminal oxygen atoms of the cluster to bind transition metal centres. The structural stability of the [V12B18O60H6] cluster permits the formation of functionalized polyoxometalate clusters, generating various crystalline lattices.  相似文献   

15.
The hydrothermal reaction of MoO3, [Cu(CH3CO2)2] · H2O, 2,2:6,2″-terpyridine (terpy), H2O3AsC6H5, H2O and H2SO4 yields aqua colored crystals of [{Cu(terpy)}2Mo12O34(O3AsC6H5)4] · 2.25H2O (1 · 2.25H2O). The two-dimensional structure of 1 is constructed from {Mo12O34(O3AsC6H5)4}4− clusters linked through {Cu(terpy)}2+ subunits. Each Cu(II) site exhibits {CuN3O2} coordination geometry and links two adjacent clusters. In turn, each cluster is associated with four Cu(II) sites through {MoO · Cu} interactions.  相似文献   

16.
Hydrothermal reaction of molybdenum oxide and copper(II) source in the presence of 4,4′-bipyridine (4,4′-bpy) afforded three-dimensional covalent framework [CuII(4,4′-bpy)(MoO4)] (1), while reaction with 1,4-diazoniabicyclo[2,2,2]octane (DABCO) in place of 4,4′-bpy and addition of metal molybdenum resulted in one-dimensional chain-like compound . The copper in 1 is divalent and approximately shows trigonal bipyramidal geometry, while in 2 is monovalent and approximately shows T-shaped geometry. The structure of 1 has a three-dimensional pillar-layered framework constructed from bimetallic {CuMoO4} layers bridged by bifunctional ligand 4,4′-bpy. Interestingly, the {CuMoO4} layer in 1 consists of 16-membered {Cu4Mo4O8} rings and 8-membered {Cu2Mo2O4} rings, different from other reported {CuMoO4} layers. The structure of 2 consists a one-dimensional chain that is attached by peripheral {Cu(HDABCO)}2+ units. The chain is constructed from octamolybdates through common corners.  相似文献   

17.
The hydrothermal reaction of CuBr2 and tpyprz in the presence of NH4VO3 and HF for 72 h at 170 °C provided [(tpyprz)3Cu10Br10] (1) in 20% yield. The two-dimensional structure of 1 may be described as Cu(I)-tpyprz chains, linked through {Cu4Br5} clusters in the ac-plane and decorated with {Cu3Br5}2− clusters projecting from one face of the layer in the b-direction. The Cu(I) sites exhibit distorted trigonal coordination {CuBr3} and distorted tetrahedral geometries, {CuBr2N2} and {CuN4}. Crystal data for 1: monoclinic space group C2, a = 12.7561(8) Å, b = 19.359(1) Å, c = 15.860(1) Å, β = 97.178(1)°, V = 3885.8(4) Å3, Z = 2, Dcalc = 2.222 g cm−3, μ(Mo Kα) = 78.75 cm−1.  相似文献   

18.
New copper(II) clofibriates (clof, {2-(4-chlorophenoxy)-2-methylpropionic or 2-(4-chlorophenoxy)isobutyric acid}) of composition Cu(clof)2L2 (where L=2-pyridylmethanol (2-pymeth) (1), N-methylnicotinamide (Menia) (4), N,N-diethylnicotinamide (Et2nia) (5), isonicotinamide (isonia) (7) or methyl-3-pyridylcarbamate (mpc) (8)), [Cu(clof)2(4-pymeth)2(H2O)] · 2H2O (4-pymeth=4-pyridylmethanol) (2 · 2H2O) and Cu(clof)2L (where L=4-pymeth (3) or Et2nia (6)) have been prepared and spectroscopically characterized. All the Cu(clof)2L2 compounds seem to possess distorted octahedral copper(II) stereochemistry with differing tetragonal distortions. An X-ray analysis of 1 was carried out and it featured a tetragonal-bipyramidal geometry around the copper(II) atom. X-ray analysis of 2 · 2H2O featured a square-pyramidal geometry around copper(II) atom. Both the Cu(clof)2L compounds seem to consist of a binuclear unit of tetracarboxylate type bridging. An X-ray analysis of 6 revealed typical binuclear paddle-wheel type structure, consisting of two copper(II) atoms in square-pyramidal geometry bridged by four carboxylate anions in the xy-plane. All complexes under study were characterized by EPR and electronic spectroscopy. The antimicrobial effects have been tested on various strains of bacteria, yeasts and filamentous fungi.  相似文献   

19.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

20.
Novel bipyridine-type linking ligands L1 ((4-py)-CHN-C10H6-NCH-(4-py)) and L2 ((3-py)-CHN-C10H6-NCH-(3-py)), a pair of isomers due to possessing different pairs of terminal pyridyl groups, were prepared by the Schiff-base condensation. In ligand L1, the N?N separation between the terminal pyridyl groups is 16.0 Å, with their nitrogen donor atoms at the para positions (4,4′). The corresponding N?N separation in ligand L2 is 14.2 Å, with the nitrogen donor atoms at the meta positions (3,3′). 1-D zigzag-chain coordination polymers [Zn(L1)(NO3)2] (1) and [Zn(L2)(NO3)2] (2) were prepared by reactions of Zn(NO3)2 · 6H2O with ligands L1 and L2, respectively, by solution diffusion. Polymer 3, [Cd(L1)1.5(NO3)2], prepared from Cd(NO3)2 · 4H2O and L1, exhibits a 1-D ladder structure, whose repeating ladder unit consists of four Cd metals and four L1 ligands to create a large 76-membered ring with dimensions of 20.8 × 20.8 Å. All products were structurally characterized by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号