首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Ru(2,2′-bipyridine)2(Hdpa)](BF4)2 · 2H2O (1), [Ru(1,10-phenanthroline)2(Hdpa)] (PF6)2 · CH2Cl2 (2) and [Ru(4,4,4′,4′-tetramethyl-2,2′- bisoxazoline)2(Hdpa)] (PF6)2 (3) are synthesized where Hdpa is 2,2′-dipyridylamine. The X-ray crystal structures of 1 and 2 have been determined. Hdpa in 1 and 2 is found to bind the metal via the two pyridyl N ends. Comparing the NMR spectra in DMSO-d6, it is concluded that 3 has a similar structure. The pKa values (for the dissociation of the NH proton in Hdpa) of free Hdpa and its complexes are determined in acetonitrile by exploiting molar conductance. These correlate linearly with the chemical shift of the NH proton in the respective entities.  相似文献   

2.
Three new supramolecular complexes based on a 2-(pyrazin-2-yl)-1H-benzimidazole (Hpbi) and a series of Cd(II) salts have been solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of CdCl2·2.5H2O with Hpbi afforded a one-dimensional chain [Cd(Hpbi)Cl2] (1), which exhibits a three-dimensional (3-D) supramolecular architecture through intermolecular X-H···Cl (X = N and C) hydrogen bonds and π-π stacking interactions. When using CdBr2·4H2O instead of CdCl2·2.5H2O under similar reaction conditions, a bisnuclear complex [Cd(Hpbi)2Br2] (2) is obtained, which obviously exhibits intermolecular X-H···Br (X = N and C) hydrogen bonds and π-π stacking interactions. When CdI2 take place of CdCl2·2.5H2O, a mononuclear complex, [Cd(Hpbi)2I2] (3), is isolated, which shows a 3D supramolecule framework formed by intermolecule hydrogen bonds and π-π packing interactions. Interestingly, the Hpbi ligand exhibits the same coordination modes in complexes 1-3. It is noteworthy that the radius of anions plays an important role in affecting the structures and luminescent intensity of the final products. The TGA for 1-3 have been investigated and discussed in detail.  相似文献   

3.
Using a non-planar tridentate ligand 2,6-bis(pyrazol-1-ylmethyl)pyridine (L5) two new coordination complexes [(L5)CoII(H2O)3]Cl2 (1) and [(L5)NiII(H2O)2Cl]Cl·H2O (2) have been synthesized and structurally characterized. Complex 1 has N3O3 distorted octahedral environment around CoII with coordination by L5 (two pyrazole and a pyridine nitrogen in a facial mode) and three water molecules. Complex 2 has N3O2Cl distorted octahedral geometry around NiII with meridional L5 coordination, two water molecules, and a Cl ion. Analysis of the crystal packing diagram reveals the involvement of solvent (water as metal-coordinated and as solvent of crystallization) and counteranion (Cl) to play significant roles in generating 1D chains, involving O-H···Cl, and O-H···O interactions.  相似文献   

4.
Five novel complexes with two pyridine substituted benzotriazole ligands, 1-(2-pyridyl)benzotriazole (L1) and 1-(4-pyridyl)benzotriazole (L2), [Zn(L1)2Cl2] (1), [{Zn(L1)2Cl2}·(L1)2] (2), [Zn(L2)2Cl2] (3), [{Zn(L2)(H2O)3(μ2-SO4)}·H2O] (4), and [{Cd(L2)(H2O)3(μ2-SO4)}·H2O] (5) were synthesized. The details of the structures were characterized by X-ray single crystal analysis, revealing that these complexes were assembled together via supramolecular interaction, such as, hydrogen bonding and π-π interactions. The influence of organic ligands, anions and reaction conditions in the formation of the complexes were investigated.  相似文献   

5.
Hydrothermal synthesis has afforded cobalt 5-substituted isophthalate complexes with 4,4′-dipyridylamine (dpa) ligands, showing different dimensionalities depending on the steric bulk and hydrogen-bonding facility of the substituent. [Co(tBuip)(dpa)(H2O)]n (1, tBuip = 5-tert-butylisophthalate) is a (4,4) grid two-dimensional coordination polymer featuring 2-fold parallel interpenetration. [Co(MeOip)2(Hdpa)2] (2, MeOip = 5-methoxyisophthalate) is organized into 3-fold parallel interpenetrated (4,4) grids through strong N-H+?O hydrogen bonding. {([Co(OHip)(dpa)(H2O)3])3·2H2O}n (3, OHip = 5-hydroxyisophthalate) possesses 1-D chain motifs. The 5-methyl derivative {[Co(mip)(dpa)]·3H2O}n (4, mip = 5-methylisophthalate) has a 3-D 658 cds topology. {[Co(H2O)4(Hdpa)2](nip)2·2H2O} (5, nip = 5-nitroisophthalate) and {[Co(sip)(Hdpa)(H2O)4]·2H2O} (6, sip = 5-sulfoisophthalate) are coordination complexes. Antiferromagnetic superexchange is observed in 1 and 4, with concomitant zero-field splitting. Thermal decomposition behavior of the higher dimensionality complexes is also discussed.  相似文献   

6.
The reaction of MCl2 · 2H2O (M = Cu, Zn) with 2,3,5,6-tetra(2-pyridyl)pyrazine (tppz) (referred hereafter as L) in 2:1 molar ratio in acetonitrile at room temperature afforded binuclear complexes [M23-L)Cl4] [Cu (1), Zn (2)] where the ligand is bis-tridentate manner. The complexes have been characterized by elemental analyses, FAB-MS, IR, EPR, NMR and electronic spectral studies. Solid state structures of both the [Cu23-L)Cl4] · 5H2O (1), [Zn23-L)Cl4] · H2O (2) have been determined by single crystal X-ray analyses. A well-resolved uudd cyclic water tetramer and water monomer were reported in the crystal host of [Cu23-L)Cl4] · 5H2O (1) and [Zn23-L)Cl4] · H2O (2) showing the contribution of the water cluster to the stability of the crystal host 1 and 2.  相似文献   

7.
MoO2Cl2(L)2 [L = (R)-(+)-methyl-p-tolylsulfoxide (R-MeTolSO) (1), methyl-p-tolylsulfoxide (MeTolSO) (2), 2-benzenesulfinyl-1,1-diphenylethanol (BSDPE) (3), 1-benzenesulfinyl-2-methyl-2-propanol (BSMP) (4), benzenesulfinylmethyl 4-methylphenyl ketone (BSMMPK) (5)], and MoO2Cl2(L) [L = BSDPE (6), BSMP (7), BSMMPK (8), (S,S)-bis(p-tolylsulfinyl)methane (S,S-TolSOCH2SOTol) (9), bis(methylsulfinyl)methane (MeSOCH2SOMe) (10), bis(phenylsulfinyl)methane (PhSOCH2SOPh) (11)] have been synthesized by reacting a solution of MoO2Cl2(H2O)2 in diethyl ether with the corresponding ligand. The crystal and molecular structures of 1, 2, and 9 have been established by X-ray diffraction analysis. The ability of 1 and 9 as catalysts for the enantioselective reduction of sulfoxides to sulphides and the oxidation of sulphides to sulfoxides has been examined.  相似文献   

8.
Four structurally diverse complexes, [Cd(dppz)(bdoa)]n (1), [Zn(dppz)(bdoa)(H2O)]n (2), [Fe(dppz)2(bdoa)]n·2nH2O (3), and [Co2(dppz)2(bdoa)2(H2O)]n·3nH2O (4), where H2bdoa = benzene-1,4-dioxyacetic acid and dppz = dipyrido[3,2-a:2′,3′-c]phenazine, have been hydrothermally synthesized. Compounds 1-4 feature chain structures. There exist π-π interactions in the structures of 1, 2 and 4. Two neighboring chains of 1 are linked through the π-π interactions into a double chain supramolecular structure. The chains of 2 and 4 are further extended by the π-π interactions to form 3D and 2D supramolecular structures, respectively. The structural differences among such complexes show that the transition metals have important influences on their structures. The photoluminescent property of complex 2 and the magnetic property of complex 4 have also been investigated.  相似文献   

9.
Reactions between Hdpa (2,2′-dipyridylamine) and either RuCl3 · xH2O and Ru2(OAc)4Cl produce mono-, di-, and tri-ruthenium complexes under various conditions. The ligand Hdpa and RuCl3 · xH2O react in boiling DMF to form the ionic species [Ru(Hdpa)2Cl2]Cl (1). Reaction of Ru2(OAc)4Cl with molten Hdpa leads to scission of the Ru-Ru bond and formation of the vertex-sharing bioctahedral complex Ru2(dpa)3(OAc)0.64Cl1.36 (2). A mixture of both of these species results from the reaction of Ru2(OAc)4Cl with Hdpa and LiCl in refluxing o-dichlorobenzene/EtOH mixtures. This mixture of compounds reacts further with KOBut and n-butanol in refluxing naphthalene to give low yields of the extended metal atom chain (EMAC) complex Ru3(dpa)4Cl2 (I).  相似文献   

10.
Treatment of ‘RuCl3 · 3H2O’ with Ph2AsCH2AsPh2 (dpam) in hot EtOH gives either trans-[RuCl2(dpam-As,As′)(dpam-As)2] (1), or cis-[RuCl2(dpam-As,As′)2] (2), depending on the mole ratio. On exposure to light, solutions of 2 isomerise to trans-[RuCl2(dpam-As,As′)2] (3). Treatment of [RuCl2(PPh3)3] with two equivalents of dpam in CH2Cl2 gave a mixture of two products, from which trans-[RuCl2(PPh3) (dpam-As,As′)(dpam-As)] (4) was isolated by recrystallisation. The crystal structures of 1-4 are reported. Complexes 1-3 in CH2Cl2 undergo electrochemical oxidation to Ru(III), and the Ru(III) form of 2 undergoes isomerisation on the voltammetric timescale to the Ru(III) form of 3.  相似文献   

11.
Reaction of the ligands diphenylphosphinylacetic acid Ph2P(O)CH2COOH (1) and 2-(tert-butylthio)phenyldiphenylphosphine oxide Ph2P(O)C6H4tBuS (2) with “MoO2Cl2”, resulted in two complexes MoO2Cl2Ph2P(O)CH2COOH (3) and MoO2Cl2Ph2P(O)C6H4tBuS(O) (4). Complexes 3 and 4 were isolated and analysed by 1H NMR, 31P NMR and X-ray crystallography. Complex 3 crystallised with a molecule of the free ligand in a 1:1 ratio (3·1) and complex 4 crystallised with molecules of the solvent CH2Cl2 within the unit cell in a 2:1 ratio (4·0.5CH2Cl2). Tetrameric arrangements comprised of hydrogen bonds were observed in complexes 1 and 3. Complex 4 exhibited a seven-membered ring structure owing to the oxidation of the sulphide in 2 to sulphoxide and coordination of this ligand via the oxygen atoms to the molybdenum atom.  相似文献   

12.
Hydrothermal chemistry was used to prepare the bimetallic organic-inorganic hybrid oxide [Cu(I)Cu(II)2(trz)2Mo4O13(OH)] · 6H2O (1 · 6H2O). The structure consists of chains linked through into a three-dimensional framework. The structures of the simple metal-triazole phases [MoO3(Htrz)0.5] (2) and [Cu(trz)] (3) are also reported. Compound 2 is two-dimensional, constructed from corner-sharing {MoO5N} octahedra. Compound 3 consists of {Cu(trz)}n chains linked through weak Cu?Cu contacts into a virtual layer.  相似文献   

13.
In this paper, two di-substituted triazine-based ligands, 6-chloro-N,N,NN′-tetrakis-pyridin-2-ylmethyl-[1,3,5]triazine-2,4-diamine (L1), and 6-chloro-N,N′-bis-pyridin-2-ylmethyl-N,N′-bis-thiophen-2-ylmethyl-[1,3,5]triazine-2,4-diamine (L2), have been prepared. Reaction of CuCl2·2H2O and Cu(NO3)2·3H2O with L1 and L2 results in the formation of [Cu2Cl4(L1)]·3MeOH (compound 1), [Cu4(NO3)8(L1)2]·2.07CH2Cl2·0.93MeOH (compound 2), [Cu2Cl4(L2)2] (compound 3) and [Cu(NO3)2(L2)]·CH2Cl2 (compound 4), respectively, which have been fully characterized and determined by single-crystal X-ray crystallography, FT-IR, elemental analysis, thermogravimetric measurement and magnetic susceptibility. The dinuclear compound 1 shows strong π-π interactions between the neighboring pyridine rings. The nitrate-π (1,3,5-triazine ring) interaction with the distance of 2.755 Å in compound 2, is the closest contact reported so far. Compounds 3 and 4 are mononuclear copper(II) compounds, in which none of thiophene rings coordinates with copper(II) ion. In addition, the different orientations of two thiophene rings in compounds 3 and 4 lead to the π-π and CH2Cl2-π (thiophene ring) interactions in compound 4, but not in compound 3.  相似文献   

14.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

15.
From solutions of seleno bridged triangular cluster Mo3Se4(aq)4+ in HCl, crystalline adducts with cucurbituril (Cuc, C36H36N24O12) of different composition, depending on HCl concentration, were isolated. From 2 M HCl, a monosubstituted cationic cluster crystallizes as {[Mo3Se4Cl(H2O)8]2(C36H36N24O12)}Cl6·16H2O (1). Increase in HCl concentration to 6 M gives a pentasubstituted anionic species, (H3O)2[Mo3Se4Cl5(H2O)4]2(C36H36N24O12)·15H2O (2). The crystal structures of 1 and 2 were determined by X-ray crystallography. Each portal of Cuc in 1 is covered with cluster cations [Mo3Se4Cl(H2O)8]3+ like a ‘lid’ on a ‘barrel’. Six water molecules in the trans position to the core μ2-Se form complementary hydrogen bonds with oxygen atoms of Cuc (O?O, 2.713-3.067 Å). In 2 the complementarity is lost and the main structure building factor is short Se?Se interactions (Se?Se, 2.96-3.43 Å) between two adjacent anionic clusters. Stereochemistry of halide substitution in the triangular clusters M3Q4 is analyzed.  相似文献   

16.
Subsequent addition of 1,2-benzenedithiol (S2-H2) and nBuLi to a solution of [Ru(NO)Cl3 · xMeOH] in THF afforded exclusively the monomeric species NBu4[RuII(NO)(S2)2] (1). Formation of dimeric (NBu4)2[RuII(NO)(S2)2]2 (2) has been confirmed when the deprotonated ligand S2-Li2 was added to [Ru(NO)Cl3 · xMeOH] and allowed to stir for 30 h. The monomer 1 undergoes aerial oxidation to give (NBu4)2[RuIV(S2)3] (3). The reaction between RuCl3 · xH2O and S2-H2 in the presence of NaOMe, afforded the dinulear RuIII species (NMe4)2[RuIII(S2)2]2 (4). A modified method for the preparation of 1 is being employed to synthesize the osmium analogue NBu4[Os(NO)(S2)2] (5) effectively. The solid state structures of 1, 2 and 3 were determined by X-ray crystal structure analysis. A comparison of relevant bond distance data suggests that 1,2-benzenedithiolate acts as an “innocent” ligand.  相似文献   

17.
Two new tetrahedral tungsten cyanide cluster compounds, [Cu(dien)]3[W4Te4(CN)12] · 9H2O (1) (dien=diethylenetriamine) and [Ni(en)(NH3)]3[W4Se4(CN)12] · 7.5H2O (2) (en=ethylenediamine), were synthesized by treating aqueous solutions of the saltlike cluster compound K6[W4Te4(CN)12] · 5H2O/K6[W4Se4(CN)12] · 6H2O with copper(II)/nickel(II) chloride in aqueous ammonia containing dien/en. The cyano-bridged layered coordination polymeric compounds were characterized by single-crystal X-ray diffraction analysis: monoclinic, space group P21 for 1; trigonal, space group for 2. Structures of 1 and 2 consist of infinite neutral layers of cluster components {W4Te4(CN)12}/{W4Se4(CN)12} connected, one another by {Cu(dien)} or {Ni(en)(NH3)} fragments, respectively.  相似文献   

18.
Compounds FeIII(3-CH3O-qsal)2PF6 · nH2O (n = 0, 2) (1, 1 · 2H2O) were synthesized and characterized: the structure of 1 and the magnetic properties of both compounds were determined. Compound 1 · 2H2O presents properties characteristic of high-spin Fe(III), while 1 presents properties of low-spin Fe(III) with an onset of a gradual spin crossover at ca. 300 K.  相似文献   

19.
Ten transition metal coordination complexes [Cu2(phen)(p-tpha)(μ-O)]n1, [Cu(m-tpha)(imH)2]n2, [Ni(5-Haipa)2(H2O)2]n3, [Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O 4, [Co(2,5-pdc)(H2O)2]n·nH2O 5, [Co2(2,5-pdc)2(H2O)6]n·2nH2O 6, [Fe(2,5-Hpdc)2(H2O)2]·H2O 7, [Co(C6H4NO2)3]·H2O 8, [Fe22-btec)(μ2-H2btec)(bipy)2(H2O)2]n9, [Mn(phen)(2,5-pdc)(H2O)2]·H2O 10 (H4btec = 1,2,4,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, 2,5-H2pdc = 2,5-pyridine-dicarboxylic acid, p-tpha = p-phthalic acid, m-tpha = m-phthalic acid, bipy = 2,2′-bipyridine, 5-H2aipa = 5-aminoisophthalic acid, imH = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid) were synthesized through hydrothermal method. They were characterized by UV-Vis absorption spectra, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicated that the complexes 1, 2, 3, 5, 6 and 9 were linked into infinite structures bridged by organic acid ligands. The other four complexes were molecular complexes and further connected to 2D or 3D structures by the hydrogen bonds. The SPS of complexes 1-10 indicate that there are positive response bands in the range of 300-800 nm showing different levels of photo-electric conversion properties. The intensity, position, shape and the number of the response bands in SPS are obviously different since the structure, species, valence, dn electrons configuration and coordinated environment of the center metals are different. There are good relationships between SPS and UV-Vis spectra.  相似文献   

20.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号