首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five novel complexes, Co(OBt)2 · 7H2O (1) (OBt = 1-hydroxybenzotriazole ion), Ni3(OBt)6 · 6H2O (2), [Ag(OBt)(HOBt)]n (3), [Zn(OBt)2]n (4) and [Cu2(OBt)4 · 3H2O]n (5) were synthesized by hydrothermal method and characterized by elemental analysis, IR spectroscopy, TGA, XRPD, and single-crystal X-ray diffraction. The results from single-crystal X-ray diffraction indicate that 1-5 are zero-dimensional (0D), zero-dimensional, one-dimensional (1D), and three-dimensional (3D) frameworks, respectively. In particular, 3 is twin crystal; 4 possesses of double-stranded chains; 5 crystallizes in orthorhombic space group P212121 with a helical chain in its structure. The luminescence properties and the magnetic properties of the five complexes were investigated.  相似文献   

2.
Four new complexes, {[Mn(imH)2(pdc)]·H2O}n (1), [Zn2(pdc)2(H2O)5]·2H2O (2), [Zn(imH)2(pdc)]·H2O (3), {[Zn2(pdc)2(bpy)(H2O)2]·5H2O}n (4) [imH = imidazole pdc = pyridine 2,6-dicarboxylate, bpy = 4,4′-bipyridine] have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR, PXRD, single-crystal X-ray diffraction and thermogravimetric analyses. All the four complexes display a three-dimensional (3D) open framework with one-dimensional (1D) channels that are filled with lattice water molecules. Particularly, in 4, the lattice water molecules form an infinite water chain. Both 1 and 4 consist of 1D polymeric chains. While 2 contains a dinuclear Zn(II) unit, and 3 is a mononuclear complex. Further, the result of thermal analysis of 1 and 2 shows the robustness of the overall supramolecular three-dimensional architecture. Complexes 1, 3, and 4 exhibit strong fluorescent emissions in the solid state at room temperature and could be significant in the field of photoactive materials.  相似文献   

3.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

4.
Two new coordination polymers [Cd(dps)2Cl2] (1) and [Co(dps)2(H2O)2]·(abs)2(H2O)2 (2) (dps = 4, 4′-dipyridylsulfide, Habs = 4-amino benzenesulfonic acid) have been synthesized under similar conditions and characterized by elemental analysis, fluorescence spectra and single crystal X-ray diffraction. Compound 1 displays a dps-bridged 2D puckered, grid-like layer, which is further linked by C-H?Cl hydrogen bonds to form a 3D supramolecular architecture. Compound 2 shows a dps-bridged double-stranded chain structure, which is extended by N-H?O and O-H?O hydrogen bonds generating a 3D network. Solid-state fluorescence results reveal that both complexes can emit strong emission bands, at 467 nm and 518 nm for 1 and 344 nm for 2, respectively. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent Co(II) ions in 2.  相似文献   

5.
Three new complexes, [Mn(OBt)2(H2O)4]·3H2O (1) (OBt = 1-hydroxybenzotriazole ion), [Zn2(OBt)2(BDC)(H2O)·H2O]n (2) (H2BDC = 1,4-benzenedicarboxylic acid), and [Cu3(OBt)2(BDC)(μ3-OH)2(H2O)2·2H2O]n (3) were synthesized by hydrothermal method and were characterized by elemental analysis, IR spectroscopy, TGA, XRPD, and single-crystal X-ray diffraction. The results from single-crystal X-ray diffraction indicate that 1, 2 and 3 are zero-dimensional (0D), two-dimensional (2D) and two-dimensional (2D) frameworks, respectively. In particular, there are all two crystallographically unique metal ions in the structures of complexes 2 and 3. Complex 2 possesses two helical chains in its structure. In the structure of 3, the chains that are built from tri-copper clusters and μ3-O atoms are connected with BDC2− to construct 2D grid structure. The luminescence properties of the three complexes were investigated.  相似文献   

6.
Two new copper(II) complexes, [Cu3(L1)2(H2O)2](ClO4)2 (1) and [CuL2⊂ (H2O)] (2) have been derived from two di-compartmental Schiff base ligands H2L1 and H2L2, respectively. Depending on slight modification of the substituent group of the potentially N2O4 donor ligands, tri- and mononuclear structures are obtained, which have been confirmed by single-crystal X-ray diffraction studies. Both complexes have been characterized by elemental analysis, IR, UV-vis and EPR spectroscopy. Complex 1 consists of an angular trinuclear array of copper ions, while complex 2 consists of a mononuclear copper center. Variable temperature magnetic susceptibility measurements have been performed to investigate the magnetic behaviour of complex 1 and the result indicates a strong antiferromagnetic exchange interaction (J = −120.1(2) cm−1) between the adjacent copper(II) centers through two double μ2-phenoxo bridges. Complex 2 is a mononuclear inclusion compound encapsulating one water molecule in the vacant external compartment of the ligand through hydrogen-bonding interactions.  相似文献   

7.
Four MII quinolinato complexes, [Zn2(quin)2(H2O)3]n (1), [Zn(quin)(H2O)2]n (2), [Zn(quin)(H2O)]n (3) and [Cd(quin)]n (4) (H2quin = 2,3-pyridinedicarboxylic acid or quinolinic acid), have been hydrothermally synthesized and structurally characterized. X-ray diffraction analyses reveal that all of these four complexes are constructed from similar rod-like SBUs, [M(quin)]n (M = Zn or Cd). Complexes 1 and 2 have similar 1-D box-like chains but different packing structures; complex 3 has a 2-D grid-like network and complex 4 has an unusual 2-D bilayer structure. Due to the different structural features, these complexes exhibit different photoluminescent emissions: complex 1 at 439 nm (λex = 345 nm), complex 2 at 428 nm (λex = 360 nm), complex 3 at 508 nm (λex = 304 nm) and complex 4 at 500 nm (λex = 324 nm).  相似文献   

8.
Six novel heterometallic Zn-Ln coordination polymers {[ZnLnCl(pydc)2(H2O)6]·3H2O}n (Ln = Nd 1, Pr 2, Sm 3, Eu 4, Tb 5, Dy 6; pydc = pyridine-2,5-dicarboxylate) were synthesized by the hydrothermal method, and their structures were measured by the single-crystal X-ray diffraction. The IR and UV-Vis-NIR absorption spectra, and the luminescence spectra in the visible and near-infrared (NIR) regions of the six complexes were determined at room temperature. They possess the same crystal structure, and the Zn(II) and Ln(III) ions in each complex are bridged into 1D infinite chain by pyridine-2,5-dicarboxylates. Meanwhile, there are numerous hydrogen bonds which result in the 3D hydrogen bonding network in the crystal. In the visible and NIR regions, the emission spectra of the complexes show the characteristic bands of the corresponding Ln(III) ions, which are mainly attributed to the sensitization from the d-L-moiety to f-L-moiety after forming the Zn-Ln complexes. In this paper, we first report the Zn-Sm complex which can exhibit the emission bands of Sm(III) in the NIR region, and discuss the sensitization from the d-L-moiety to f-L-moiety on the basis of the different characteristics of levels for different Ln(III) ions.  相似文献   

9.
Reactions of FeII, CoII, NiII, and ZnII salts with 6-quinolinecarboxylic acid (HL) under the hydrothermal conditions afford three monomeric complexes [M(L)2(H2O)4] (M = FeII for 1, CoII for 2, and NiII for 3) and a 1-D polymeric species {[Zn(L)2(H2O)] · H2O}n (4). The crystal structures of the ligand HL and these four complexes have been determined by using the X-ray single-crystal diffraction technique. The results suggest that complexes 1-3 are isostructural, displaying novel 3-D pillar-layered networks through multiple intermolecular hydrogen bonds, whereas in coordination polymer 4, the 1-D comb-like coordination chains are extended to generate a hydrogen-bonded layer, which is further reinforced via aromatic stacking interactions. Solid-state properties such as thermal stability and fluorescence emission of the polymeric ZnII complex 4 have also been investigated.  相似文献   

10.
Reaction of the N-tosyl-ethylenediamine and salicylaldehyde forms a new sulfonamide Schiff base N-[2-(2-hydroxybenzylideneamino)ethyl]-4-methyl-benzene-sulfonamide (H2L). Three novel complexes constructed from H2L, namely, [M(HL)2] · xH2O (M = Cu, x = 0 for 1, M = Ni, x = 0 for 2 and M = Zn, x = 1 for 3) have been prepared and characterized via X-ray single-crystal diffraction, elemental analysis, X-ray powder diffraction (XRPD), FT-IR, UV-Vis, TGA and photoluminescence measurements. Complex hydrogen bonds, C-H···π and π-π stacking interactions lead 1-3 to present 1-D, 2-D and 3-D supramolecular architectures, respectively.  相似文献   

11.
Two new manganese(II) complexes, [Mn(L1)(L1H)(ClO4)(H2O)][ClO4]2·0.5CH3CN·H2O (1) [L1 = trans-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine)] and [Mn2(μ-L2)2(H2O)3(CH3CN)3][ClO4]4·2CH3CN (2) [L2 = cis-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine)], have been prepared and examined by single-crystal X-ray diffraction analysis, showing that complex 1 is a mononuclear compound, whereas complex 2 is a dinuclear species. The cis/trans isomers L1 and L2 have similar coordination properties, but behave as bidentate and tridentate chelating ligands, respectively, giving distorted octahedral metal coordination geometries. X-ray diffraction studies revealed that the molecular and crystal structures are stabilized by a series of intra- and intermolecular interactions. In both cases extended supramolecular networks are generated, in compound 1 through O-H···O, O-H···N, N-H···O, N-H···N, C-H···O, C-H···N, C-H···π and π···π interactions, and in compound 2 through O-H···O, O-H···N, C-H···O and π···π interactions. The observed structural differences between the two metal complexes might be a consequence of these stabilizing effects.  相似文献   

12.
Tuning the substituents of triazoles, we obtained di- and tri-nuclearic triazole-nickel complexes [Ni2(deatrz)4(H2O)5](SO4)2 · 7H2O (1) and [Ni3(dmtrz)6(H2O)6](SO4)3 · 21H2O (2) (deatrz = 3,5-diethanyl-4-amino-1,2,4-triazole; dmtrz = 3,5-dimethanyl-1,2,4-triazole). The X-ray single-crystal diffraction results reveal that sulfate anions and water clusters form supramolecular networks in both complexes. In 1, a supramolecular two-dimensional structure was fabricated by nano-sized grid with novel tetramer water rings templated via binuclear-nickel(II) cations, while in 2, water molecules and sulfate anions construct the first sulfate-water three-dimensional supramolecular network as host to encapsulate trinuclear-nickel guests.  相似文献   

13.
The self-assembly of a V-shaped ligand 3,3′,4,4′-diphenylsulfonetetracarboxylate (dstc) and metal salts in the presence of a series of N-donor ligands yielded four new complexes, namely, [Cu4(H2dstc)4(phen)4]·12H2O (1), {[Cu2(dstc)(bpe)(H2O)2]·4H2O}n (2), [Cu3(dstc)(bipy)(μ2-OH)2(H2O)2]n (3), {[Cd5(dstc)2(bipy)23-OH)2(H2O)4]·4H2O}n (4) (phen = 1,10-phenanthroline; bpe = 1,2-bis(4-pyridyl)ethene; bipy = 4,4′-bipyridine). All the complexes were structurally determined by single-crystal X-ray diffraction and characterized by elemental analyses, IR spectra, X-ray powder diffraction and TG analyses. Complex 1 is a discrete tetranuclear unit, which further assembles into a 3D supramolecular framework by intermolecular hydrogen bonding interactions. Complex 2 is composed of 2D 44 grid-like layers based on dinuclear copper units. Complex 3 features a rare 3D (6,8)-connected topological net consisting of trimetallic clusters. 12-connected pentanuclear cadmium clusters are observed in complex 4 and the resulting structure shows an uncommon (4,12)-connected topology. The structural differences among 1-4 demonstrate that the nature of the N-donor assistant ligands and metal ions can play critical roles in the formation and structures of the resulting complexes. Magnetic studies showed antiferromagnetic interactions for 1 and 3. In addition, the luminescent property of 4 was also studied.  相似文献   

14.
A new Mn(II) complex, [Mn2(edta)(H2O)]n·nH2O (1) (H4edta = ethylenediaminetetraacetic acid) has been synthesized by the reaction of MnCl2·4H2O and H4edta under hydrothermal conditions, and was characterized by single-crystal X-ray diffraction study, variable temperature (1.8-300 K) magnetic measurement, and thermal gravity analysis. The result of X-ray crystallographic analysis reveals that complex 1 is the first two-dimensional (2D) Mn-edta coordination polymer with a grid-like (4,4)-topology, which is built from Mn-carboxylate chains and entirely deprotonated edta4− ligands with a maximum denticity. The variable temperature magnetic data indicate that complex 1 exhibits strong antiferromagnetic couplings.  相似文献   

15.
Three distinct coordination complexes, viz. {[Cu(μ-L)2] · (H2O)4}n (1), [Ni(L)2(CH3OH)2] (2), and [Zn(L)2(H2O)2] · (H2O)2 (3), have been prepared by the reactions of metal nitrates with isoquinoline-3-carboxylic acid (HL). X-ray single-crystal diffraction suggests that 1 is a 1D chain coordination polymer in which the CuII ions are connected by carboxylates, whereas complexes 2 and 3 represent discrete mononuclear species. In all the cases, the coordination entities are further organized via hydrogen-bonding interactions to generate multifarious supramolecular networks. Remarkably, a well-resolved 1D water morphology is observed for the first time in the crystalline lattice of 1 along [1 0 0], which consists of edge-sharing tetrameric subunits and stabilized by the metal-organic host surroundings.  相似文献   

16.
Three palladium(II) complexes have been synthesized, using 3,4-bis(cyanamido) cyclobutane-1,2-dione dianion (3,4-bis(cyanamido)squarate or 3,4-NCNsq2−): [Pd(en)(3,4-NCNsq)] · 1.5H2O (1) (en=1,2-diaminoethane), [Pd(en)(3,4-(NC(O)NH2)sq)] · 0.5H2O (2) and K3Na[Pd2(3,4-(NCN)2sq)4] · 5H2O (3). Complex 1 has been characterized by elemental analysis, IR and 13C NMR spectroscopies. Complexes 2 and 3 have been characterized by single-crystal X-ray diffraction. In complex 2, the unusual hydration of the cyanamido ligand was observed, it proceeds in the coordination sphere of the palladium and leads to a chelating urea squarate ligand. Complex 3 is an anionic dinuclear complex containing four bridging cyanamido squarate ligands. In complexes 2 and 3, the 3,4-NCNsq2− ligand (hydrated or not) is, for the first time, coordinated to the metal atom by the two amido nitrogen atoms, either in a chelating mode (complex 2) or in a bridging mode giving a short Pd ? Pd distance of 2.8866(15) Å (complex 3). Electrochemical studies in acetonitrile and dmf solutions have been performed on complexes 1 and 3.  相似文献   

17.
To compare the cytotoxicities and the DNA-binding properties in tetranuclear complexes with different bridging ligands, two tetracopper(II) complexes with formulae of [Cu4(oxbe)2Cl2(bpy)2]·4H2O (1) and [Cu4(oxbm)2Cl2(bpy)2]·2H2O (2) were synthesized, where H3oxbe and H3oxbm stand for N-benzoato-N′-(2-aminoethyl)oxamide and N-benzoato-N′-(1,2-propanediamine)oxamide, respectively, and bpy is 2,2′-bipyridine. Complex 1 was characterized by elemental analyses, IR and electronic spectra and single-crystal X-ray diffraction. The crystal structure reveals the presence of the circular tetranuclear copper(II) cations which are assembled by a pair of cis-oxamido-bridged dinuclear copper(II) units through carboxyl bridges. The crystal structure of complex 2 has been reported in our previous paper. However, the bioactivities were not studied. Cytotoxicities experiments reveal that both the two complexes exhibit cytotoxic effects against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549, and complex 1 has the better activities than those of complex 2. The results of the interactions between the two complexes and herring sperm DNA (HS-DNA) suggest that the two complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 3.93 × 104 M−1 (1) and 2.48 × 104 M−1 (2). These results indicated that the bridging ligands may play an important role in the cytotoxicities and the DNA-binding properties of tetranuclear complexes.  相似文献   

18.
Three one-dimensional zinc complexes, namely, [Zn(pzdc) · 3H2O] · H2O (1), [Zn2(pzdc)· 4H2O] · 2.5H2O (2), and [Zn(pzdc)(phen) · 4H2O]n (3) (H2pzdc, pyrazine-2,3-dicarboxylic acid, phen = 1,10-phenanthroline), have been synthesized successfully under hydrothermal condition. X-ray diffraction analyses reveal that complex 1 is a square-wave-like chain and complex 2 shows a 1D ladder-like infinite chain, while complex 3 has 1D zigzag chain structure. In all cases, the Zn(II) centers have octahedral coordination geometries. Through hydrogen bonding (such as O-H···O, O-H···N and C-H···O) and/or π-π stacking interactions, three-dimensional supramolecular networks are constructed in three complexes. Furthermore, the IR, TGA and luminescent properties are also investigated in this work.  相似文献   

19.
The complexes [Cd(dipyr)2(sac)(H2O)] sac·H2O 1 and [Hg(dipyr)(sac)2] 2, where dipyr = dipyridylamine and sac = saccharinate, have been synthesised, and fully characterised by single-crystal X-ray diffraction at 120 K. The geometry around Cd in 1 is approximately octahedral, with the metal coordinated by two bidentate dipyr ligands, one N-bonded sac and one H2O molecule; the second sac forms the counter-ion, and there is also a water of crystallisation. An extensive H-bonded network is formed. In the anhydrous Hg complex 2, the metal has approximately tetrahedral geometry, with coordination from a bidentate dipyr ligand and two N-bonded sac groups. H-bonding interactions are again extensive, even without the presence of H2O molecules in the structure, leading to chains along the a-axis.  相似文献   

20.
Ten transition metal coordination complexes [Cu2(phen)(p-tpha)(μ-O)]n1, [Cu(m-tpha)(imH)2]n2, [Ni(5-Haipa)2(H2O)2]n3, [Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O 4, [Co(2,5-pdc)(H2O)2]n·nH2O 5, [Co2(2,5-pdc)2(H2O)6]n·2nH2O 6, [Fe(2,5-Hpdc)2(H2O)2]·H2O 7, [Co(C6H4NO2)3]·H2O 8, [Fe22-btec)(μ2-H2btec)(bipy)2(H2O)2]n9, [Mn(phen)(2,5-pdc)(H2O)2]·H2O 10 (H4btec = 1,2,4,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, 2,5-H2pdc = 2,5-pyridine-dicarboxylic acid, p-tpha = p-phthalic acid, m-tpha = m-phthalic acid, bipy = 2,2′-bipyridine, 5-H2aipa = 5-aminoisophthalic acid, imH = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid) were synthesized through hydrothermal method. They were characterized by UV-Vis absorption spectra, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicated that the complexes 1, 2, 3, 5, 6 and 9 were linked into infinite structures bridged by organic acid ligands. The other four complexes were molecular complexes and further connected to 2D or 3D structures by the hydrogen bonds. The SPS of complexes 1-10 indicate that there are positive response bands in the range of 300-800 nm showing different levels of photo-electric conversion properties. The intensity, position, shape and the number of the response bands in SPS are obviously different since the structure, species, valence, dn electrons configuration and coordinated environment of the center metals are different. There are good relationships between SPS and UV-Vis spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号