首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Two mononuclear neutral copper(I) complexes, Cu(L1)PPh3 (1), Cu(L2)(PPh3)2 (2) ([L1] = [{N(C6H3iPr2-2,6)C(H)}2CPh]; [L2] = [{N(C6H5)C(H)}2CPh]) have been synthesized and structurally characterized by X-ray crystallography. In complex 1, the copper(I) atom is in a distorted three-coordinate trigonal planar environment, whereas in complex 2 with the less sterically hindered β-dialdiminato ligand, the copper(I) atom is the centre of a four-coordinate distorted tetrahedron. At room temperature complexes 1 and 2 in a film of PMMA exhibit green emission at 543 and 549 nm with lifetimes of 5.28 and 5.32 ns, respectively.  相似文献   

2.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

3.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

4.
Oxalate- or 4,4′-bipyridine-bridged dimeric copper(II) complexes, [Cu2L2(μ-ox)] (1) and [Cu2L2(μ-bipy)](BF4)2 (2) [where ox = oxalate, bipy = 4,4′-bipyridine, HL = N-(1H-pyrrol-2-ylmethylene)-2-pyridineethanamine, L = HL−H+], have been synthesised and characterised by elemental analysis, IR, UV-Vis and single crystal X-ray diffraction. Crystal structure determinations carried out on 1 and 2 reveal that 1 is an oxalate-bridged centrosymmetrical square pyramidal dimeric copper(II) complex while 2 is a 4,4′-bipyridine-bridged non-centrosymmetric square planar dinuclear copper(II) complex. Comparison of the optimised geometries with the corresponding crystal structures suggests that the B3LYP/LANL2DZ level can reproduce the structures of 1 and 2 on the whole. The electronic spectra of 1 and 2 predicted by B3LYP/LANL2DZ method show some blue shifts compared with their experimental data. Thermal analysis carried out on 1 shows that there is only one exothermal peak at about 260 °C and the residue is presumably Cu2O4N6.  相似文献   

5.
A dicyanamide bridged 2D polynuclear complex of copper(II) having molecular formula [Cu2(L)(μ1,5-dca)2]n (1) has been synthesized using the Schiff base ligand N,N′-bis(salicylidene)-1,3-diaminopentane, (H2L) and sodium dicyanamide (dca). The complex presents a 2D hexagonal structure formed by 1,5-dca singly bridged helical chains connected through double 1,5-dca bridges. The chelating characteristics of the H2L Schiff base ligand results in the formation of copper(II) dimer with a double phenoxo bridge presenting a very strong antiferromagnetic coupling in the copper(II) derivative (1) (J = −510 cm−1). The dimeric asymmetric unit of 1 is very similar to the active site of the catechol oxidase and, as expected, also presents catalytic activity for the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone in presence of O2, as demonstrated by kinetic studies of this oxidation reaction monitored by absorption spectroscopy resulting in high turnover number (Kcat = 259 h−1).  相似文献   

6.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

7.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

8.
A chiral Schiff base N-(S)-2-(6-methoxylnaphthyl)-propanoyl-N′-(2-hydroxylbenzylidene)hydrazine (H2L) has been synthesized. Reaction of H2L with Cu(OAc)2 · H2O led to the formation of a metal complex {[CuL] · H2O · 2DMF} (1). In complex 1, the potential dinegative tridentate L2− ligand acting as tetradentate bridging ligand coordinate to two metal ions so as to form a novel infinite metal-organic coordination chain structure. The enantiomerically pure ligand H2L presents two different sets of signals in the 1H NMR spectrum either in chloroform solution or in dimethylsulfoxide solution, showing the presence of both (E) and (Z) isomers. The X-ray structural investigations of H2L revealed that it is the fully extended E-configuration in the solid state.  相似文献   

9.
Five complexes [Mn2O(L1)4]n (1), [Co(L2)(H2O)2]n (2), [Co(L3)2(H2O)2]n (3) and [Co(L4)2(4,4′-bpy)(H2O)]n (4) were obtained by using flexible organic ligands HL1, HL2, HL3, and HL4 in hydrothermal systems with cobalt, copper and manganese salts respectively (HL1 = 2-(4-pyridylmethylthio)benzoic acid, HL2 = 4-(4-pyridylmethylthio)benzoic acid, HL3 = 2-(3-pyridylmethylthio)benzoic acid, HL4 = 4-(2-pyridylmethylthio)benzoic acid). The five complexes have been characterized by X-ray single crystal diffraction, FT-IR spectrum and elemental analysis. Complex 1 is assembled to a 3D porous framework with Mn2O units as nodes. Complex 2 shows 2D layer networks comprised of six-coordinated Co2+ centers and L2 anionic ions. Complexes 3 and 4 have different 1D double or single chain structures. Various non-covalent bonds such as hydrogen bonds, π?π interactions, H-bond grids and S?S weak interactions lead to interesting supramolecular frameworks. DC (direct current) temperature dependent magnetic susceptibilities suggest weak antiferromagnetic behaviors exist in 1, and single ion paramagnetic along with spin-orbit coupling behavior dominate in 3 and 4.  相似文献   

10.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

11.
Three palladium(II) complexes have been synthesized, using 3,4-bis(cyanamido) cyclobutane-1,2-dione dianion (3,4-bis(cyanamido)squarate or 3,4-NCNsq2−): [Pd(en)(3,4-NCNsq)] · 1.5H2O (1) (en=1,2-diaminoethane), [Pd(en)(3,4-(NC(O)NH2)sq)] · 0.5H2O (2) and K3Na[Pd2(3,4-(NCN)2sq)4] · 5H2O (3). Complex 1 has been characterized by elemental analysis, IR and 13C NMR spectroscopies. Complexes 2 and 3 have been characterized by single-crystal X-ray diffraction. In complex 2, the unusual hydration of the cyanamido ligand was observed, it proceeds in the coordination sphere of the palladium and leads to a chelating urea squarate ligand. Complex 3 is an anionic dinuclear complex containing four bridging cyanamido squarate ligands. In complexes 2 and 3, the 3,4-NCNsq2− ligand (hydrated or not) is, for the first time, coordinated to the metal atom by the two amido nitrogen atoms, either in a chelating mode (complex 2) or in a bridging mode giving a short Pd ? Pd distance of 2.8866(15) Å (complex 3). Electrochemical studies in acetonitrile and dmf solutions have been performed on complexes 1 and 3.  相似文献   

12.
Two isomers of the N,O-coordinated acetylpyrrolyl complex [Ru(PPh3)2(CO)(NC4H3C(O)CH3)H] {cis-N,H (1) and trans-N,H (2)} have been prepared as models for catalytic intermediates in the Murai reaction. Complex 2 isomerises to 1 upon heating via a dissociative pathway (ΔH = 195 ± 41 kJ mol−1; ΔS = 232 ± 62 J mol−1 K−1); the mechanism of this process has been modeled using density functional calculations. Complex 2 displays moderate catalytic activity for the Murai coupling of 2′-methylacetophenone with trimethylvinylsilane, but 1 proved to be catalytically inactive under the same conditions.  相似文献   

13.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

14.
Two three-dimensional (3D) novel lanthanide complexes with the H2Lbenzimidazole-5,6-dicarboxylate [Ln2L3(H2O)] [Ln = Eu (1), Tb (2)] and one two-dimensional (2D) novel lanthanide complex [Pr(L)(HL)H2O]·H2O (3) were synthesized by hydrothermal reaction at 180 °C and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction. The result showed that complexes 1 and 2 are isostructural and build porous 3D networks by L2− groups linking Ln(III) atoms via tetradentate (bridging and bridging) and pentadentate (bridging/chelating and bridging) coordination modes. Complex 3 is a eight-coordinated Pr(III) chain complex, exhibiting a 2D polymeric network with parallel Pr-carboxylate chains along the crystallographic c-axis. In addition, it is found that in these structures, coordination modes of L2− and HL are versatile and can adopt different conformations according to distinct dimensions of polymeric structures. The photoluminescent properties of 1, 2 and thermogravimetric analyses of the three complexes were discussed in detail.  相似文献   

15.
In order to further understand the coordination chemistry of diazamesocyclic systems, a series of mononuclear NiII complexes with 1,4-diazacycloheptane (DACH) functionalized by additional imidazole or pyridine donor pendants, including [NiL1](ClO4)2 · H2O (1), [NiL1Cl](ClO4) (2), [NiL2Cl](ClO4) · CH3OH (3), [NiL2Cl][NiL2](ClO4)3 (4) and [NiL3](ClO4)2 (5), where L1 = 1,4-bis(N-1-methylimidazol-2-yl-methyl)-1,4-diazacycloheptane, L2 = 1,4-bis(pyridyl-2-yl-methyl)-1,4-diazacycloheptane, and L3 = 1,4-bis-(imidazol-4-yl-methyl)-1,4-diazacycloheptane, have been prepared and characterized. A detailed study on the solid structures and solution spectra of these complexes indicates that tetradentate ligands L1, L2 and L3 would lead to new NiII complexes with different coordination environments in the solid states and solution. The N-methyl substituted imidazole functionalized ligand L1 forms green compound 2 and yellow product 1; while the pyridine functionalized ligand L2 affords red product 4 and green complex 3; the ligand L3 results in only one stable mononuclear NiII product 5. The solution behaviors of these interesting compounds were also investigated by UV-Vis technique.  相似文献   

16.
The complexes of 2-[2-(diphenylphosphoryl)prop-2-yl]-1,8-naphthyridine (L) with lanthanide nitrates Ln(NO3)3 (Ln = Nd, Eu, Lu) were investigated to elucidate the coordination ability of a novel type of potentially tridentate ligands - phosphorylalkyl substituted naphthyridines. The X-ray crystal structures of [NdL3]3+ · 3(NO3) · MeCN (1), [EuL3]3+ · 3(NO3) · [Eu(NO3)3 · 4H2O] · MeCN (2), and [LuL3]3+ · 3(NO3) · [Lu(NO3)3 · 3H2O] · 2 MeCN · 0.5 H2O (3) are reported together with their IR and Raman spectra. All the compounds studied contain isostructural [LnL3]3+ cations and three NO3 counterions. Coordination of each L appears to be O,N,N tridentate-cyclic and coordination number of Ln is nine. Vibrational spectra of 1-3 are also compared with that of free ligand and model compounds.  相似文献   

17.
Reactions of H2L [H2L = N,N′-bis(3-methoxysalicylidene)propane-1,2-diamine] and Ln(NO3)3 · 6H2O give rise to two different mononuclear 4f complexes, namely, {[(H2L)La(NO3)3(MeOH)] · H2O}n (1) and [(H2L)Nd(NO3)3] (2). Further additions of Cu(Ac)2 · H2O to the mononuclear 4f complexes yield expected heterodinuclear Cu-4f complexes [LCu(Me2CO)Ln(NO3)3] (3, Ln = Nd; 4, Ln = Eu; 5, Ln = Dy). Complex 1 is a unique 1D polymeric chain structure, and 2 is one of the few structurally characterized discrete hexadentate salen-type mononuclear 4f complexes. Complexes 3-5 are similar to their analogues. However, they are prepared by a reversed synthetic route in contrast to their isomorphic complexes. Electrochemical behavior of heterodinuclear Cu-4f complexes 3-5 has been examined by cyclic voltammetry in acetonitrile. The redox potential of heterodinuclear Cu-4f complexes 3-5 shows significant anodic shift comparing to that of mononuclear copper complex (LCu). A tendency of anodic shift was observed in a sequence of 3 < 4 < 5. This results from the modulating effect of coordination geometry around Cu(II) ion on redox potential.  相似文献   

18.
Three distinct coordination complexes, viz. {[Cu(μ-L)2] · (H2O)4}n (1), [Ni(L)2(CH3OH)2] (2), and [Zn(L)2(H2O)2] · (H2O)2 (3), have been prepared by the reactions of metal nitrates with isoquinoline-3-carboxylic acid (HL). X-ray single-crystal diffraction suggests that 1 is a 1D chain coordination polymer in which the CuII ions are connected by carboxylates, whereas complexes 2 and 3 represent discrete mononuclear species. In all the cases, the coordination entities are further organized via hydrogen-bonding interactions to generate multifarious supramolecular networks. Remarkably, a well-resolved 1D water morphology is observed for the first time in the crystalline lattice of 1 along [1 0 0], which consists of edge-sharing tetrameric subunits and stabilized by the metal-organic host surroundings.  相似文献   

19.
Two phenoxo bridged dinuclear Cu(II) complexes, [Cu2L2(NO2)2] (1) and [Cu2L2(NO3)2] (2) have been synthesized using the tridentate reduced Schiff-base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol (HL). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The structures of the two compounds are very similar having the same tridentate chelating ligand (L) and mono-dentate anionic ligand nitrite for 1 and nitrate for 2. In both complexes Cu(II) is penta-coordinated but the square pyramidal geometry of the copper ions is severely distorted (Addison parameter (τ) = 0.33) in 1 while the distortion is quite small (average τ = 0.11) in 2. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = −140.8 and −614.7 cm−1 for 1 and 2, respectively) show that the coupling is much stronger in 2.  相似文献   

20.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号