首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbOFe(III)) oxidation by H2O2 and of trHbOFe(IV)O reduction by NO and NO2 are reported. The value of the second-order rate constant for H2O2-mediated oxidation of trHbOFe(III) is 2.4 × 103 M−1 s−1. The value of the second-order rate constant for NO-mediated reduction of trHbOFe(IV)O is 7.8 × 106 M−1 s−1. The value of the first-order rate constant for trHbOFe(III)ONO decay to the resting form trHbOFe(III) is 2.1 × 101 s−1. The value of the second-order rate constant for NO2-mediated reduction of trHbOFe(IV)O is 3.1 × 103 M−1 s−1. As a whole, trHbOFe(IV)O, generated upon reaction with H2O2, catalyzes NO reduction to NO2. In turn, NO and NO2 act as antioxidants of trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be involved in both H2O2 and NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial respiration.  相似文献   

2.
Bis(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)OR], as well as mono(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)Ph], of chromium and tungsten are accessible from propynones [HCCC(O)Ph] or propynoic acid esters [HCCC(O)OR; R = Et, (−)-menthyl, endo-bornyl] by the following reaction sequence: (a) deprotonation of the alkynes, (b) reaction with [(CO)5M-THF] (M = Cr, W), and (c) alkylation of the resulting alkynyl metallate, [(CO)5MCCC(O)R], with Meerwein salts. Vinylidene complexes, [(CO)5MCC(R′)C(O)OR], are formed as a by-product by Cβ-alkylation of the alkynyl metallate. Dimethylamine displaces one alkoxy substituent of the bis(alkoxy)allenylidene complexes to give dimethylamino(alkoxy)allenylidene complexes, [(CO)5MCCC(OR)NMe2]. The analogous reaction of dimethylamine with a mono(alkoxy)-substituted allenylidene complex affords the aminoallenylidene complex [(CO)5CrCCC(NMe2)Ph]. When the amine is used in large excess, the α,β-unsaturated aminocarbene complex [(CO)5CrC(NMe2)C(H)C(NMe2)Ph] is additionally formed by addition of the amine across the CαCβ-bond of the allenylidene ligand. The reaction of [(CO)5MCCC(OEt)2] with dimethyl ethylenediamine offers access to bis(amino)allenylidene complexes, in which Cγ is part of a five-membered heterocycle. Photolysis of bis(alkoxy)allenylidene complexes in the presence of triphenylphosphine yields tetracarbonyl- and tricarbonyl{bis(phosphine)}allenylidene complexes. Diethylaminopropyne inserts into the CβCγ bond of [(CO)5MCCC(OEt)OMethyl] to give alkenylallenylidene complexes. Subsequent acid-catalyzed intramolecular cyclization affords a pyranylidene complex.  相似文献   

3.
Nitric oxide (NO) is a diffusible messenger that conveys information based on its concentration dynamics, which is dictated by the interplay between its synthesis, inactivation and diffusion. Here, we characterized NO diffusion in the rat brain in vivo. By direct sub-second measurement of NO, we determined the diffusion coefficient of NO in the rat brain cortex. The value of 2.2 × 10−5 cm2/s obtained in vivo was only 14% lower than that obtained in agarose gel (used to evaluate NO free diffusion). These results reinforce the view of NO as a fast diffusing messenger but, noticeably, the data indicates that neither NO diffusion through the brain extracellular space nor homogeneous diffusion in the tissue through brain cells can account for the similarity between NO free diffusion coefficient and that obtained in the brain. Overall, the results support that NO diffusion in brain tissue is heterogeneous, pointing to the existence of a pathway that facilitates NO diffusion, such as cell membranes and other hydrophobic structures.  相似文献   

4.
The reactions of halo-alkynes Cl-CCH, C-lCC-Cl or PhCC-I with solutions of Li+[MeAuMe] in diethylether containing Ph3P do not give the expected oxidative addition products Me2(RCC)Au(PPh3) with R = H, Cl, Ph. A mixture of other complexes is obtained instead which are generated in secondary reactions involving reductive elimination of ethane and/or dialkyne. However, addition of the halo-alkene H(Cl)CCCl2 to the same substrate solution affords trans-Me2[trans-H(Cl)CC(Cl)]Au(PPh3) in good yield. Its molecular structure with pseudo-Cs symmetry has been determined by the solution NMR spectra and a single-crystal X-ray diffraction study. The reaction of methyl iodide with solutions of Li+[RCCAuCCR] in diethylether containing PPh3 give the quaternary salts Ph3PMe+ [RCCAuCCR] as the main products and only small amounts of cis-Me2(RCC)Au(PPh3) complexes probably formed in a series of oxidative addition, reductive elimination, and substitution reactions. The structure of Ph3PMe+ [PhCCAuCCPh] has been determined.  相似文献   

5.
Pyrazine- and pyridine-based π-conjugated σ-donor molecules, such as 4,4′-bipyridine, 1,2-di(4-pyridyl)ethylene, 3,5-dipyridyl-1,2,4-triazole, N,N′-bis(4-pyridylmethylidene)benzene-1,4-diamine, 2,5-di(pyridylmethylidene)cyclopentanone, 2,6-di(4-pyridylmethylidene)cyclohexanone (LL, 2a-2g) can successfully be used to span heterobimetallic π-tweezer units of the type [{[Ti](μ-σ,π-CCSiMe3)2}M]+ ([Ti] = (η5-C5H4SiMe3)2Ti; M = Cu, Ag). The thus accessible di-cationic species [{[Ti](μ-σ,π-CCSiMe3)2}MLLM{(Me3SiCC-μ-σ,π)2[Ti]}]2+ (4), which are formed via the formation of [{[Ti](μ-σ,π-CCSiMe3)2}MLL]+ (3) complexes, can be isolated in yields between 66% and 99%.However, when C5H4NCHCHC6H4CHCHNC5H4 (5a) and C5H4NCHNC6H4CHCHNC5H4 (5b), respectively, are reacted with {[Ti](μ-σ,π-CCSiMe3)2}AgBF4(1c) in a 1:1 molar ratio, then the silver(I) ion is released from the organometallic π-tweezer 1c and coordination polymers [AgBF4 · 5a]n (6a) and [AgBF4 · 5b]n (6b) along with [Ti](CCSiMe3)2 (7) are formed in quantitative yield.  相似文献   

6.
Bis(ferrocenyl)-substituted allenylidene complexes, [(CO)5MCCCFc2] (1a-c, Fc = (C5H4)Fe(C5H5), M = Cr (a), Mo (b), W (c)) were obtained by sequential reaction of Fc2CO with Me3Si-CCH, KF/MeOH, n-BuLi, and [(CO)5M(THF)]. For the synthesis of related mono(ferrocenyl)allenylidene chromium complexes, [(CO)5CrCCC(Fc)R] (R = Ph, NMe2), three different routes were developed: (a) reaction of the deprotonated propargylic alcohol HCCC(Fc)(Ph)OH with [(CO)5Cr(THF)] followed by desoxygenation with Cl2CO, (b) Lewis acid induced alcohol elimination from alkenyl(alkoxy)carbene complexes, [(CO)5CrC(OR)CHC(NMe2)Fc], and (c) replacement of OMe in [(CO)5CrCCC(OMe)NMe2] by Fc. Complex 1a was also formed when the mono(ferrocenyl)allenylidene complex [(CO)5CrCCC(Fc)NMe2] was treated first with Li[Fc] and the resulting adduct then with SiO2. The replacement route (c) was also applied to the synthesis of an allenylidene complex (7a) with a CC spacer in between the ferrocenyl unit and Cγ of the allenylidene ligand, [(CO)5CrCCC(NMe2)-CCFc]. The related complex containing a CHCH spacer (9a) was prepared by condensation of [(CO)5CrCCC(Me)NMe2] with formylferrocene in the presence of NEt3. The bis(ferrocenyl)-substituted allenylidene complexes 1a-c added HNMe2 across the Cα-Cβ bond to give alkenyl(dimethylamino)carbene complexes and reacted with diethylaminopropyne by regioselective insertion of the CC bond into the Cβ-Cγ bond to afford alkenyl(diethylamino)allenylidene complexes, [(CO)5MCCC(NEt2)CMeCFc2]. The structures of 5a, 7a, and 9a were established by X-ray diffraction studies.  相似文献   

7.
The reactions of [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(Cl) (9, R = CO2Me) with propargyl alcohol derivatives (2-propyn-1-ol, 2-methyl-3-butyn-2-ol, 1-ethynylcyclopentanol, and 1-ethynylcyclooctanol), in the presence of water leads to the formation of iridium(III)-vinyl complexes bearing the general structure [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(CO)(κ1-vinyl) where vinyl = -CHCH2, -(E)-CHCHMe, -CHC(CH2)4, or -CHC(CH2)7. In these, the CO ligand was derived from the terminal carbon of the starting alkyne and the oxygen atom from water. Under anhydrous conditions, 9 undergoes reaction with 2-propyn-1-ol to give trimethyl 1,3-dihydro-3-oxo-4,5,6-isobenzofurantricarboxylate, the result of a cycloaromatization/transesterification involving the buta-1,3-dien-1,4-diyl ligand in 9 and 2-propyn-1-ol.  相似文献   

8.
The new cluster Li[Fe331-SCCFc)(CO)9] reacts with ClAuPPh3 to afford compound [Fe3Au(μ42-CCFc)(CO)9(PPh3)], which exhibits an isomeric equilibrium in solution with the cluster [Fe3Au(μ32-CCFc)(CO)9(PPh3)].The rupture of C-S bonds in the thioethers Me3SiCCSCCR (R = Fc, SiiPr3) in the presence of Fe3(CO)12, yields to the clusters [Fe3(μ-SCCSiiPr3)(μ-CCSiMe3)(CO)9] and [Fe3(μ,η2-(SiiPr3)CCCCSiMe3)(μ3-S)(CO)9] together with the unexpected compounds [Fe2(μ-SCC(H)R)(CO)6] (R = SiMe3, SiiPr3).Additionally, the dinuclear derivatives [Fe2(μ-SCCR)(μ-CCR′)(CO)6] (R = Fc, R′ = SiMe3; R = SiMe3, R′ = Fc; R = SiMe3; R′ = SiiPr3) have also been obtained. These compounds have been spectroscopically characterized and the crystal structure of some of them has been solved.  相似文献   

9.
A phylloquinone molecule (2-methyl, 3-phytyl, 1, 4-naphthoquinone) occupies the A1 binding site in photosystem 1 particles from Synechocystis sp. 6803. In menB mutant photosystem 1 particles from the same species, plastoquinone-9 occupies the A1 binding site. By incubation of menB mutant photosystem 1 particles in the presence of phylloquinone, it was shown in another study that phylloquinone will displace plastoquinone-9 in the A1 binding site. We describe the reconstitution of unlabeled (16O) and 18O-labeled phylloquinone back into the A1 binding site in menB photosystem 1 particles. We then produce time-resolved Fourier transform infrared (FTIR) difference spectra for these menB photosystem 1 particles that contain unlabeled and 18O-labeled phylloquinone. By specifically labeling only the phylloquinone oxygen atoms we are able to identify bands in FTIR difference spectra that are due to the carbonyl (CO) modes of neutral and reduced phylloquinone. A positive band at 1494 cm−1 in the FTIR difference spectrum is found to downshift 14 cm−1 and decreases in intensity on 18O labeling. Vibrational mode frequency calculations predict that an antisymmetric vibration of both CO groups of the phylloquinone anion should display exactly this behavior. In addition, phylloquinone that has asymmetrically hydrogen bonded carbonyl groups is also predicted to display this behavior. The positive band at 1494 cm−1 in the FTIR difference spectrum is therefore due to the antisymmetric vibration of both CO groups of one electron reduced phylloquinone. Part of a negative band at 1654 cm−1 in the FTIR difference spectrum downshifts 28 cm−1 on 18O labeling. Again, vibrational mode frequency calculations predict this behavior for a CO mode of neutral phylloquinone. The negative band at 1654 cm−1 in the FTIR difference spectrum is therefore due to a CO mode of neutral phylloquinone. More specifically, calculations on a phylloquinone model molecule with the C4O group hydrogen bonded predict that the 1654 cm−1 band is due to the non hydrogen bonded C1O mode of neutral phylloquinone.  相似文献   

10.
11.
12.
13.
14.
Yeast cytochrome c peroxidase was used to construct a model for the reactions catalyzed by the second cycle of nitric oxide synthase. The R48A/W191F mutant introduced a binding site for N-hydroxyguanidine near the distal heme face and removed the redox active Trp-191 radical site. Both the R48A and R48A/W191F mutants catalyzed the H2O2 dependent conversion of N-hydroxyguanidine to N-nitrosoguanidine. It is proposed that these reactions proceed by direct one-electron oxidation of NHG by the Fe+4O center of either Compound I (Fe+4O, porph+) or Compound ES (Fe+4O, Trp+). R48A/W191F formed a Fe+2O2 complex upon photolysis of Fe+2CO in the presence of O2, and N-hydroxyguanidine was observed to react with this species to produce products, distinct from N-nitrosoguanidine, that gave a positive Griess reaction for nitrate + nitrite, a positive Berthelot reaction for urea, and no evidence for formation of NO. It is proposed that HNO and urea are produced in analogy with reactions of nitric oxide synthase in the pterin-free state.  相似文献   

15.
The aminoallenylidene(pentacarbonyl)chromium complexes [(CO)5CrCCC(NR1R2)Ph] (1a-c) react with dimethylamine by addition of the amine to the C1C2 bond of the allenylidene ligand to give alkenyl(amino)carbene complexes [(CO)5CrC(NMe2)CHC(NR1R2)Ph] (2a-c) (R1 = Me: R2 = Me (a), Ph (b); R1 = Et: R2 = Ph (c)). In contrast, addition of a large excess (usually 20 equivalents) of ammonia or primary amines, H2NR, to solutions of [(CO)5CrCCC(NMe2)Ph] (1a) affords the aminoallenylidene complexes [(CO)5CrCCC(NHR)Ph] (1d-w) in which the dimethylamino group is replaced by NH2 or NHR, respectively. In addition to simple amines such as methylamine, butylamine, and aniline, amines carrying a functional group (allylamine, propargylamine) and amino acid esters as well as amino terpenes and amino sugars can be used to displace the NMe2 substituent. Usually the Z isomer (with respect to the partial C3-N double bond) is formed exclusively. Products derived from addition of H2NR to the C1C2 bond of 1a are not observed. The amino group in 1d-w is rapidly deprotonated by excess of amine to form iminium alkynyl chromates [1d-w], thus protecting 1d-w from addition of free amine to either C3 or across the C1C2 bond. The iminium alkynyl chromates are readily reprotonated by acids or by chromatography on wet SiO2 to reform 1d-w.  相似文献   

16.
CR1R2OH, Ri = CH3 or H, react with the complex [CoIII(NH3)5CN]2+ to form an observable intermediate probably via bonding to the nitrogen of the cyanide. This intermediate isomerizes to form a second intermediate. The second intermediate decomposes into Co2+(aq), 5NH4+, CN and R1R2CO. The plausible structures of the intermediates are discussed. The radicals CH3, CH2CHO, , and are considerably less reactive towards this complex, the formation of intermediates in their presence is not observed.  相似文献   

17.
During infection, Mycobacterium leprae is faced with the host macrophagic environment limiting the growth of the bacilli. However, (pseudo-)enzymatic detoxification systems, including truncated hemoglobin O (Ml-trHbO), could allow this mycobacterium to persist in vivo. Here, kinetics of peroxynitrite (ONOOH/ONOO) detoxification by ferryl Ml-trHbO (Ml-trHbOFe(IV)O), obtained by treatment with H2O2, is reported. Values of the second-order rate constant for peroxynitrite detoxification by Ml-trHbOFe(IV)O (i.e., of Ml-trHbOFe(III) formation; kon), at pH 7.2 and 22.0 °C, are 1.5 × 104 M−1 s−1, and 2.2 × 104 M−1 s−1, in the absence of and presence of physiological levels of CO2 (∼1.2 × 10−3 M), respectively. Values of kon increase on decreasing pH with a pKa value of 6.7, this suggests that ONOOH reacts preferentially with Ml-trHbOFe(IV)O. In turn, peroxynitrite acts as an antioxidant of Ml-trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. As a whole, Ml-trHbO can undertake within the same cycle H2O2 and peroxynitrite detoxification.  相似文献   

18.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

19.
Molecular structures of dimethylbis(trimethylsilylketyl)silane (Me2Si[C(SiMe3)CO]2), dimethylbis(trimethylgermylketyl)silane (Me2Si[C(GeMe3)CO]2), and dimethylbis(trimethylstannylketyl)germane (Me2Ge[C(SnMe3)CO]2) have been studied in the gas phase by electron diffraction accompanied by high level ab initio and DFT calculations. Extensive theoretical conformational analyses of the molecules in the vapour predicted a possibility of existence of two types of conformers with small energy differences. The first type had gauche-gauche arrangements of the ketenyl groups in the central C(CO)XC(CO) fragments directed away from each other. The second type had nearly syn-gauche arrangements of the ketenyl groups. In addition, the energy differences were found to depend on the level of computations used. The experimental analysis, in turn, was unable to distinguish between different conformers due to the large number of similar overlapping distances. The experimental data were fitted by an averaged single-conformer model, which nevertheless allowed reliable determination of bonds and bonded angles in the molecules. Main experimental (rh1) structural parameters for Me2Si[C(SiMe3)CO]2, Me2Si[C(GeMe3)CO]2, and Me2Ge[C(SnMe3)CO]2, i.e. Me2X[C(YMe3)CO]2 (X,Y = Si, Ge, Sn), are (X-C)mean 187.7(1) pm, 194.6(2) pm, 216.1(3) pm; (Y-C)mean, 187.7(1) pm, 188.8(8) pm, 194.6(4) pm; (CC)mean, 135.3(5) pm, 131.6(5) pm, 131.5(13) pm; (CO)mean, 117.0(7) pm, 117.4(7) pm, 119.0(11) pm; (C-H)mean, 110.6(7) pm, 110.0(4) pm, 109.1(13) pm; (X(Y)-CC)mean, 114.4(2)°, 115.6(1)°, 115.6(2)°; (C-X(Y)-CMe)mean, 108.3(3)°, 108.4(3)°, 108.9(13)°; C(2)-C(1)-Y(4)-C(10), −19(6)°, 5(4)°, −9(10)°; C(7)-C(6)-Y(9)-C(38),−22(7)°, −32(3)°, −9(10)°; C(2)-C(1)-X(5)-C(6), 128(4)°, 142(1)°, 108(9)°; C(7)-C(6)-X(5)-C(1), 92(6)°, 115(2)°, 108(9)°, respectively.  相似文献   

20.
In our study, EPR spin-trapping technique was employed to study dark production of two reactive oxygen species, hydroxyl radicals (OH) and singlet oxygen (1O2), in spinach photosystem II (PSII) membrane particles exposed to elevated temperature (47 °C). Production of OH, evaluated as EMPO-OH adduct EPR signal, was suppressed by the enzymatic removal of hydrogen peroxide and by the addition of iron chelator desferal, whereas externally added hydrogen peroxide enhanced OH production. These observations reveal that OH is presumably produced by metal-mediated reduction of hydrogen peroxide in a Fenton-type reaction. Increase in pH above physiological values significantly stimulated the formation of OH, whereas the presence of chloride and calcium ions had the opposite effect. Based on our results it is proposed that the formation of OH is linked to the thermal disassembly of water-splitting manganese complex on PSII donor side. Singlet oxygen production, followed as the formation of nitroxyl radical TEMPO, was not affected by OH scavengers. This finding indicates that the production of these two species was independent and that the production of 1O2 is not closely linked to PSII donor side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号