首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO4)2·6H2O in methanol in 3:1 M ratio at room temperature yields light green [CuL3](ClO4)2·H2O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL3](ClO4)2·0.5CH3CN has been determined which shows Jahn-Teller distortion in the CuN6 core present in the cation [CuL3]2+. Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g|| = 2.262 (A|| = 169 × 10−4 cm−1) and g = 2.069. The Cu(II/I) potential in 1 in CH2Cl2 at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL3]+ in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL3]+ are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 Å while the ideal Cu(I)-N bond length in a symmetric Cu(I)N6 moiety is estimated as 2.25 Å. Reaction of L with Cu(CH3CN)4ClO4 in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL2]ClO4 (2). Its 1H NMR spectrum indicates that the metal in [CuL2]+ is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH2Cl2 at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From 1H NMR titration, the free energy of binding of L to [CuL2]+ to produce [CuL3]+ in CD2Cl2 at 298 K is estimated as −11.7 (±0.2) kJ mol−1.  相似文献   

2.
New silver(I) complexes have been synthesised from the reaction of AgNO3, monodentate PR3 (PR3 = P(o-tolyl)3, P(m-tolyl)3, P(p-tolyl)3, P(p-C6H4F), SeP(C6H5)3) or bidentate tertiary (dppe = bis(diphenylphosphane)ethane, dppf = 1,1′-bis(diphenylphosphane)ferrocene) phosphanes and potassium dihydrobis(3-nitro-1,2,4-triazolyl)borate, K[H2B(tzNO2)2]. These compounds have been characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H and 31P) NMR spectral data. The adduct {[H2B(tzNO2)2]Ag[P(m-tolyl)3]2} has been characterized by single crystal X-ray studies. In the former, the H2B(tzNO2)2 acts as a monodentate ligand utilizing the coordinating capability of only one of the additional (exo-) ring nitrogens to complete the coordination array about the silver atom.  相似文献   

3.
1:1 and 2:1 adducts of diphosphine ligands R2P(R′)nPR2 (dppm: R = Ph, R′ = CH2, n = 1; dppe: R = Ph, R′ = CH2, n = 2; dppp: R = Ph, R′ = CH2, n = 3; dppb: R = Ph, R′ = CH2, n = 4; dppf: R = Ph, R′ = ferrocenyl, n = 1) with silver(I) methanesulfonate have been synthesized and characterized both in solution (1H, 31P NMR) and in the solid state (IR, single crystal X-ray structure analysis). The two different stoichiometries have been found to depend on the molar ratio of ligand to metal employed and the nature of the diphosphine ligand. In AgO3SMe:dppp,dppb (1:1)2, in the [Ag(P^P)2Ag] arrays, the silver atoms are also bridged by anion oxygen atoms, in disparate fashion commensurate with the different Ag?Ag distances.  相似文献   

4.
The title compounds, for short Ag6(tsac)6 (1) and [Cu4(tsac)4(MeCN)2] · 2MeCN (2), were prepared by the reaction of thiosaccharin with Ag(I) or Cu(II) salts in different solvents. The new complexes were characterized by FT-IR, Raman, UV-Vis and NMR spectroscopy. Their crystal and molecular structures were determined by X-ray diffraction methods. The structures were solved from 1621 (1) and 7080 (2) reflections with I > 2σ(I) and refined to agreement R1-factors of 0.0261 (1) and 0.0456 (2). Ag6(tsac)6 molecule derives from the clustering of six Ag(tsac) moieties related to each other through the crystallographic 3-bar (S6) symmetry operations of the space group. This results in a highly regular molecular structure where the silver atoms are at the corners of an octahedral core slightly compressed along one of its three-fold axis [inter-metallic Ag?Ag contacts of 3.1723(4) and 3.1556(4) Å]. The six thiosaccharinate ligands bridge neighboring Ag atoms along the C3-axis through Ag-N bonds [d(Ag-N) = 2.285(2) Å] at one end and bifurcated Ag-S(thione)-Ag bonds [Ag-S distances of 2.4861(7) and 2.5014(8) Å] at the other end. In contrast, the 2 compound is arranged in the lattice as an irregular tetrameric copper complex [Cu4(tsac)4(MeCN)2] where the metals show different environments. Two copper ions are four-fold coordinated to three tsac ions through the N-atom of one tsac [Cu-N distances of 2.112(3) and 2.064(3) Å] and the thione sulfur atom of the other two [Cu-S distances in the range from 2.284(1) to 2.358(1) Å] and to a MeCN solvent molecule [Cu-N distances of 1.983(4) and 2.052(3) Å]. The other two copper ions are in three-fold environment, one trans-coordinated to two tsac ions [Cu-N distances of 1.912(3) and 1.920(3) Å] and to the thione S-atom of a third ligand [d(Cu-S) = 2.531(1) Å], the other one to the thione sulfur atom of three tsac ligands [Cu-S distances in the range from 2.229(1) to 2.334(1) Å]. The clustering renders the metals to short distances from each other, the shorter Cu?Cu distance being 2.6033(7) Å, as to presume the existence of weak inter-metallic interaction within the cluster.  相似文献   

5.
Three 1-D transition metal-nitronyl nitroxide radical complexes with dicyanoaurate(I) bridges, [M(NIT3py)2][Au(CN)2]2 [NIT3py = 2-(3′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, M = Mn, Co, Zn (1-3)], were synthesized and structurally characterized. Three compounds are all isostructural in monoclinic, C2/c space group with Z = 4. The [Au(CN)2] anions link [M(NIT3py)2] units via μ2-bridging mode, leading to a linear coordination chain. The M(II) ion adopts a distorted octahedral geometry with four N atoms from [Au(CN)2] groups and two pyridyl-N atoms from NIT3py ligands. The magnetic behavior shows that the couplings are both weak antiferromagnetic between Mn(II) and NIT3py and between Co(II) and NIT3py.  相似文献   

6.
The system was studied at 25 °C and at I = 0.1 M NaClO4 using hydrodynamic voltammetry, gold potentiometry, UV-Vis spectrophotometry and Raman spectroscopy. The presence of two mixed-ligand species, Au(S2O3)(SO3)3− and , was detected from the Raman experiments and supported by the gold potentiometric experiments. The stepwise formation constant, log K11r, for the reaction was found to be 1.1 (r = 1) and 4.8 (r = 2) from the hydrodynamic voltammetric experiments.  相似文献   

7.
Copper(I) cyanide reacts with various liquid amines and sulfides (L) under solvent-less conditions to form (CuCN)Ln, n = 0.5, 0.57, 0.75, 0.8, 1, 1.25, 1.5, 2. New X-ray structures are reported for L = Py (Py = pyridine, n = 0.57), 2-MePy (n = 1), 3-EtPy (n = 1.5), 2-ClPy (n = 1), 3-ClPy (n = 2), 3-MeOPy (n = 2), 4-tBuPy (n = 1.5), piperidine (n = 1.25), N-methylmorpholine (n = 1), N,N-dimethylcyclohexylamine (n = 1), 1-methylimidazole (n = 3), Me2S (n = 1), and tetrahydrothiophene (n = 1). The amine structures (except for the monomeric 1-methylimidazole complex) reveal 1D CuCN chains decorated with 0-2 L per metal atom. Chain structures observed include zigzag, helical and figure-8 helical. The CuCN-sulfide structures show sulfur-bridging of CuCN chains. In some cases (CuCN)L?1.5 species are transformed to (CuCN)L under vacuum. Thermal analysis shows facile release of ligand, yielding CuCN. Most of the (CuCN)Ln products are photoluminescent, emitting in the visible region. In some cases, coordination of very similar amines results in remarkably different emission spectra.  相似文献   

8.
The synthesis of triethylphosphine gold(I) 4-nitrobenzenethiolate, Et3PAu(SC6H4NO2-4), is reported. Et3PAu(SC6H4NO2-4) displays a low energy visible electronic absorption band which is solvent dependent: EtOH (λmax = 385 nm), acetonitrile (λmax = 391 nm), THF (λmax = 395 nm), and DMSO (λmax = 402 nm). The corresponding low energy visible electronic absorption band of 4-nitrobenzenethiolate, 4-NO2C6H4S also shows solvent dependency: acetonitrile, (λmax = 484 nm), DMSO (λmax = 502 nm), dimethylformamide (λmax = 505 nm). The positive solvatochromic shifts for Et3PAu(SC6H4NO2-4) and 4-NO2C6H4S are consistent with an intraligand (IL) charge transfer transition, i.e. π(S) → ∗π (C6H4NO2-4) or n(S) → ∗π (C6H4NO2-4). Assignment of 4-NO2C6H4S was aided by a DFT calculation.  相似文献   

9.
Compounds of the type [HQ][Au(PPh3)(xspa)] and [HP][Au(PPh3)(xspa)] {HQ = diisopropylammonium; HP = triethylammonium; H2xspa = 3-aryl-2-sulfanylpropenoic acids [x: p = 3-phenyl-, f = 3-(2-furyl)-, t = 3-(2-thienyl)-, -o-py = 3-(2-pyridyl)-, Clp = 3-(2-chlorophenyl)-, -o-mp = 3-(2-methoxyphenyl)-, -p-mp = 3-(4-methoxyphenyl)-, -o-hp = 3-(2-hydroxyphenyl)-, -p-hp = 3-(4-hydroxyphenyl)-, diBr-o-hp = 3-(3,5-dibromo-2-hydroxyphenyl]} were synthesized and characterized by IR and NMR (1H, 13C and 31P) spectroscopy and by FAB mass spectrometry. The structures of [HQ][Au(PPh3)(Clpspa)] and [HQ][Au(PPh3)(-o-mpspa)] show that the crystal contains hydrogen-bonded diisopropylammonium cations and [Au(PPh3)(xspa)] anions. The anions in the two compounds have different structures, with the carboxylate group either coordinated or not coordinated to the gold atom, respectively. The in vitro antitumour activities against the HeLa-229, A2780 and A2780cis cell lines were determined for all complexes. The diisopropylammonium derivatives were generally found to be more active, in particular against the A2780cis cell line, and showed a high ability to circumvent the cellular resistance to cisplatin.  相似文献   

10.
The hydrothermal reaction of CuBr2 and tpyprz in the presence of NH4VO3 and HF for 72 h at 170 °C provided [(tpyprz)3Cu10Br10] (1) in 20% yield. The two-dimensional structure of 1 may be described as Cu(I)-tpyprz chains, linked through {Cu4Br5} clusters in the ac-plane and decorated with {Cu3Br5}2− clusters projecting from one face of the layer in the b-direction. The Cu(I) sites exhibit distorted trigonal coordination {CuBr3} and distorted tetrahedral geometries, {CuBr2N2} and {CuN4}. Crystal data for 1: monoclinic space group C2, a = 12.7561(8) Å, b = 19.359(1) Å, c = 15.860(1) Å, β = 97.178(1)°, V = 3885.8(4) Å3, Z = 2, Dcalc = 2.222 g cm−3, μ(Mo Kα) = 78.75 cm−1.  相似文献   

11.
Polydentate nitrogen heterocycle ligand 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) reacted with M(NO3)x (M = Ag, x = 1; M = Cd, x = 2) to give two new complexes [Ag(2,3-dpp)(NO3)]2 (1) and [Cd(2,3-dpp)(NO3)2]n (2). Both complexes have been characterized by single-crystal X-ray diffraction, elemental analyses, IR and 1H NMR spectroscopy. Single-crystal X-ray analyses showed that complex 1 crystallized in monoclinic, space group P21/n is a dimmer containing penta-coordinated Ag+ ion. While compound 2 has 1D chain-like structure with repeat unit Cd(2,3-dpp)(NO3)2, in which the Cd(II) presents octa-coordinated N4O4 donor set with two four-membered chelating rings and two five-membered chelating rings around Cd(II) ion. Meanwhile, every neutral chain [Cd(2,3-dpp)(NO3)2]n is mutually connected by face-to-face π?π packing interactions to form a two dimensional layer. Furthermore, antibacterial activities of compound 1 and luminescent property of the compound 2 are also investigated.  相似文献   

12.
Six new adducts of the form AgX:PPh3:H2C(pzx)2 (1:1:1) (H2C(pzx)2 = H2C(pz)2 = bis(pyrazolyl)methane or H2C(pzMe2)2 = bis(3,5-dimethylpyrazolyl)methane; X = ClO4, NO3, SO3CF3) have been synthesized and characterized by analytical, spectroscopic (IR, far-IR, 1H and 31P NMR) and two of them also by single crystal X-ray diffraction studies for comparison with counterpart adducts with 2,2′-bipyridyl (‘bpy’) derivatives reported in a previous paper, the bpy-derived ligands forming five-membered chelate rings, while the present H2C(pzx)2 should, potentially, form six-membered rings. Such is the case, the two adducts exhibiting quasi-planar N2AgP coordination environments, perturbed by the approach of the oxyanion, unidentate in the case of the perchlorate but, in the case of the nitrate, an interesting disordered aggregate of differing unidentate modes.  相似文献   

13.
Consecutive synthesis methodologies for the preparation of a series of copper(I) formates [LmCuO2CH] (L = nBu3P: 4a, m = 1; 4b, m = 2; 5, L = [Ti](CCSiMe3)2, m = 1, [Ti] = (η5-C5H4SiMe3)2Ti) and [LmCuO2CH·HO2CR] (L = nBu3P: 7a, m = 1, R = H; 7b, m = 2, R = H; 7c, m = 2, R = Me; 7d, m = 2, R = CF3; 7e, m = 2, R = Ph. L = (cC6H11)3P, R = H: 8a, m = 2; 8b, m = 3. L = (CF3CH2O)3P, R = H: 9a, m = 2; 9b, m = 3. L = (CH3CH2O)3P, R = H: 10a, m = 2; 10b, m = 3. L = [Ti](CCSiMe3)2; m = 1: 11a, R = H; 11b, R = Ph) is reported using [CuO2CH] (1) and L (2a, L = nBu3P; 2b, L (cC6H11)3P; 2c, L = (CF3CH2O)3P; 2d, L = (CH3CH2O)3P; 3, L = [Ti](CCSiMe3)2) as key starting materials. Addition of formic acid (6a) or carboxylic acid HO2CR (6b, R = Me; 6c, R = CF3; 6d, R = Ph) to the afore itemized copper(I) formates 4 and 5 gave metal-organic or organometallic 7-11. The molecular structures of 8a and 11a in the solid state are reported showing a threefold coordinated copper(I) ion, setup by either two coordinatively-bonded phosphorus atoms and one formate oxygen atom (8a) or two π-bonded alkyne ligands and one oxygen atom (11a). A formic acid molecule is additionally hydrogen-bonded to the CuO2CH moiety. The use of 7b as suitable precursor for the deposition of copper onto TiN-coated oxidized silicon wafers by the spin-coating process below 300 °C is described. Complex 7b offers an appropriate transformation behavior into metal phase by an elimination-decarboxylation mechanism. The morphology of the copper films strongly depends on the annealing conditions. A closed grain network densified by a post-treatment is obtained (8 °C min−1, N2/H2 carrier gas). Hydrogen post-anneal to 420 °C after film deposition gave a copper film showing resistivities from 2.5 to 3.7 μΩ cm. This precursor was also used for gap-filling processes.  相似文献   

14.
At ambient temperature, three 1D nitrogen-heterocyclic Cu(I)-diphosphine polymers, {[Cu2(dppm)2(BF4)2(pyz)](CH2Cl2)2}n (1), {[Cu2(dppm)2(4,4′-bpy)(CF3SO3)](CF3SO3)(CH3OH)}n (2), {[Cu2(dppe)2 (phen)2](ClO4)2(CH2Cl2)}n (3) (dppm = bis(diphenylphosphino)methane, dppe = bis(diphenylphosphino)ethane, pyz = pyrazine, 4,4′-bpy = 4,4′-bipyridine, phen = 1,10-phenanthroline) have been synthesized and characterized by X-ray crystallography, luminescence, IR, 1H, and 31P NMR. Structure analysis shows that 1 is a 1D linear polymer, 2 is a 1D stair-shaped polymer, and 3 is a 1D W-shaped polymer. A photoluminescent study of them shows that they exhibit fluorescent emission bands at ca. 555 nm, 535 nm and 557 nm, respectively.  相似文献   

15.
The substitution behaviour of [PtCl(R)(COD)] (R = Me and Fc) complexes, by the stepwise addition of phosphine ligands, L (L = PPh3, PEt3 and P(NMe2)3), were investigated in situ by 1H and 31P NMR spectroscopy. Addition of less than two equivalents of the phosphine ligand results in the formation of dimeric molecules with the general formula trans-[Pt(R)(μ-Cl)(L)]2 for the sterically demanding systems where R = Me/L = P(NMe2)3 and R = Fc/L = PEt3, PPh3 and P(NMe2)3 while larger quantities resulted in cis- and trans mixtures of mononuclear complexes being formed. In the case of the relatively small steric demanding, strongly coordinating, PEt3 ligand the trans-[PtCl(R)(PEt3)2] mononuclear complexes were exclusively observed in both cases. The crystal structures of the two substrates, [PtCl(R)(COD)] (R = Me or Fc), as well as the cis-[PtCl(Fc)(PPh3)2] substitution product are reported.  相似文献   

16.
Compounds of the type [(AuPPh3)2(xspa)]; H2xspa [x:p = 3-phenyl-, f = 3-(2-furyl)-, t = 3-(2-thienyl)-, -o-py = 3-(2-pyridyl)-, Clp = 3-(2-chlorophenyl)-, -o-mp = 3-(2-methoxyphenyl)-, -p-mp = 3-(4-methoxyphenyl)-, -o-hp = 3-(2-hydroxyphenyl)-, -p-hp = 3-(4-hydroxyphenyl)-, -diBr-o-hp = 3-(3,5-dibromo-2-hydroxyphenyl)-; spa = 2-sulfanyl propenoato] were synthesized and characterized by IR and NMR (1H, 13C and 31P) spectroscopy and by FAB mass spectrometry. The structures of [(AuPPh3)2(Clpspa)], [(AuPPh3)2(o-hpspa)], [(AuPPh3)2(p-hpspa)]·MeOH and [(AuPPh3)2(diBr-o-hpspa)]·2Me2CO show the dinuclear nature of the complexes with the two gold atoms, one of which is also O-bonded to an O atom of the carboxylate group, bonded to the S atom. The in vitro antitumor activities against the HeLa-229, A2780 and A2780cis cell lines were determined and the compounds were found to be highly effective, in particular against the A2780cis cell line, with eight of the nine compounds having IC50 values better than that of cisplatin. This behavior is indicative of a high ability to circumvent the cellular resistance to this drug.  相似文献   

17.
Copper(I) complexes have been synthesized from the reaction of CuCl, monodentate tertiary phosphines PR3 (PR3 = P(C6H5)3; P(C6H5)2(4-C6H4COOH); P(C6H5)2(2-C6H4COOH); PTA, 1,3,5-triaza-7-phosphaadamantane; P(CH2OH)3, tris(hydroxymethyl)phosphine) and lithium bis(3,5-dimethylpyrazolyl)dithioacetate, Li[LCS2]. Mono-nuclear complexes of the type [LCS2]Cu[PR3] have been obtained and characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H, 13C and 31P) NMR spectral data; in these complexes the ligand behaves as a κ3-N,N,S scorpionate system. One exception to this stoichiometry was observed in the complex [LCS2]Cu[P(CH2OH)3]2, where two phosphine co-ligands are coordinated to the copper(I) centre. The solid-state X-ray crystal structure of [LCS2]Cu[P(C6H5)3] has been determined. The [LCS2]Cu[P(C6H5)3] complex has a pseudo tetrahedral copper site where the bis(3,5-dimethylpyrazolyl)dithioacetate ligand acts as a κ3-N,N,S donor.  相似文献   

18.
Three mixed ligands coordination polymers (CPs) [Ag1.5(apym)(nta)0.5]n (1), [(NH4)Ag2(mapym)(nta)·(H2O)3]n (2), [Ag2(dmapym)3(Hnta)]n (3) (apym = 2-aminopyrimidine, mapym = 4-methyl-2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, H3nta = nitrilotriacetate) were synthesized and characterized. For 1-3, as the substituents change from H to one methyl and two methyl groups, the dimensionalities of 1-3 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 1, the μ2-apym ligands link the Ag(I) ions to form a 1D double-chain incorporating ligand unsupported Ag···Ag interaction. The nta3− ligands extend the 1D double-chain into a 3D framework. In 2, one heptadentate nta3− ligand binds four Ag(I) ions and incorporates μ2-mapym ligand to link metal centers to form a 2D sheet which can be simplified to be a 103 net. Complex 3 features a 1D chain structure incorporating Hnta2− and monodentate dmapym ligands. The substituents on the pyrimidyl ring intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the CPs. The photoluminescent properties of 1-3 were also investigated.  相似文献   

19.
Density functional theory has been used to study the electronic structure of [M(tp)] and [M(tpm)]+ conformers (M = Cu, Ag; tp = tris(pyrazol-1-yl)borate anion, tpm = tris(pyrazol-1-yl)methane) and the energetics of their interconversions. Results for the free tp ligand are similar to those of tpm [M. Casarin, D. Forrer, F. Garau, L. Pandolfo, C. Pettinari, A. Vittadini, J. Phys. Chem. A 112 (2008) 6723], indicating an intrinsic instability of the tripodal conformation (κ3-like). This points out that, though frequently observed, the κ3-coordinative mode is unlikely to be directly achieved through the interaction of M(I) with the κ3-like tp/tpm conformer. Analogously to the [M(tpm)]+ molecular ions, the energy barrier for the κ2-[M(tp)] → κ3-[M(tp)] conversion is computed to be negligible. Though κn-[M(tp)] and κn-[M(tpm)]+ (n = 1, 2, 3) have similar metal-ligand covalent interactions, the negative charge associated to the tp ligand makes the M-tp bonding stronger.  相似文献   

20.
Two pyrazine-connected 1D copper(I) dppm polymers, {[Cu3(dppm)3Br2][Cu2(dppm)(pyz)Br2] Br · (CH3OH)2}n (1) and {[Cu2(dppm)2(NO3)2(pyz)](pyz)}n (2) (dppm = bis(diphenylphosphino)methane, pyz = pyrazine) have been synthesized and characterized by X-ray crystallography, luminescence, IR, 1H, and 31P NMR. Structure analysis shows that complex 1 is a neutral 1D polymer in sine-curve-like form, while complex 2 is in linear form. And photoluminescent study of them shows that they exhibit fluorescent emission bands at ca. 434 nm and 431 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号