首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nickel(II) complexes of the compositions [Ni(hmidtc)(bpy)2]ClO4 (I), [Ni(hmidtc)(phen)2]ClO4 (II), [Ni(hmidtc)(phen)2]SCN (III), [Ni(hmidtc)(phen)2]PF6 (IV), [Ni(hmidtc)(phen)2]BPh4 (V), [Ni(hmidtc)(phen)2]AcO·2H2O (VI) and [Ni(hmidtc)(phen)2]Br·H2O (VII), involving a combination of one hexamethyleneimine-dithiocarbamate anion (hmidtc) and two bidentate N,N-donor ligands (2,2′-bipyridine (bpy) for I or 1,10-phenanthroline (phen) for II-VII), have been prepared. The compounds were characterized by elemental analysis, molar conductivity measurements, UV-Vis and IR spectroscopy, magnetochemical measurements and thermal analysis. A single-crystal X-ray analysis of the complex I revealed a distorted octahedral geometry with the nickel(II) ion coordinated by four nitrogen atoms (from two bidentate-coordinated bpy molecules) and two sulfur atoms (from one bidentate-coordinated hmidtc anion), together giving an NiN4S2 donor set.  相似文献   

2.
Seven new organic-inorganic hybrid compounds containing inorganic polyoxometalates and trigonal organic ligand 2,4,6-tris-(3/4-pyridyl)-1,3,5-triazine (3/4-tpt), namely [Mo8O26M(Htpt)2(H2O)2]n (M = Zn (1), Co (2), Ni (3)), [Mo8O26Cu(Htpt)2(H2O)2]n·2nH2O (4), [Mo8O26(H2tpt)2]·6H2O (5), [Mn(Mo4O13)(4-tpt)2]n (6) and [Fe3(Mo4O15)(3-tpt)]n·nH2O (7), were synthesized hydrothermally and characterized by EA, IR, TG, and PXRD techniques. Single crystal X-ray structural analysis revealed that compounds 1-4 are 1-D coordination polymers constructed from [Mo8O26]4− cluster and [M(Htpt)2(H2O)2]4+ fragments. Compound 5 is an isolated cluster composed of [Mo8O26]4− anion and monodentate H2tpt2+ cation. 3-Tpt ligands in 1-5 are partially protonated and act as monodentate ligands. Octamolybdates adopt β- and γ-[Mo8O26]4− structural mode in compounds 1-4 and 5, respectively. In compound 6, each [Mo4O13]2− tetramer links four Mn(II) ions to form a 2-D wave-like polymeric layer. The 2-D [MnMo4O13] bimetallic layers are pillared by neutral 4-tpt bidentately to generate a 3-D metal-organic framework. Compound 7 is a 3-D coordination polymer constructed from 2-D [Fe3(Mo4O15)] bimetallic polymeric layer and pillared by neutral tridentate 3-tpt. These compounds are thermal stable under 250 °C. The compounds 1 and 5 display luminescence with emission maximum at 481 and 442 nm, respectively.  相似文献   

3.
Hydrothermal synthesis of orotic acid (H3L) with Ni(OAc)2·4H2O gives a green 1D co-ordinative network of composition [Ni(HL)(H2O)3] (3). The kinetic product [Ni(HL)·(H2O)4]H2O (4) can be prepared by conventional crystallisation. When boiled in water it is transformed into the thermodynamically favoured trihydrate 3. An unstable blue phase 5 that could not be characterised was also observed. Hydrothermal synthesis of orotic acid and M(OAc)2·4H2O (M=Ni, Co, Mn or Zn) and either 2,2-bipyridyl (bipy), 2,2-dipyridylamine (dpa), phenanthroline (phen), methyl-3-(2-pyridyl)pyrazole (pypz) or 2,9-dimethyl-1,10-phenanthroline (dmphen) gave infinite 1D co-ordinative networks of composition [M(HL)bipy(H2O)] (M=Co or Mn) (6-7) and complexes of composition [Ni(HL)bipy (H2O)2]2H2O (8); [Ni(HL)(dpa)(H2O)2]H2O (9); [Ni(HL)(phen)(H2O)2]·2H2O (10); [Ni(HL)(C9H9N3)(H2O)2]·2H2O (11); [Ni(HL)(dmphen)(H2O)] (12); [Zn(HL)bipy(H2O)] (13) and [Ni(HL)(dpa)2]·0.5H2O (14).  相似文献   

4.
Four new coordination polymers, namely [Ni1.5(L)(fum)0.5(mal)(H2O)]·4H2O (1), [Zn2(L)(male)2]·3H2O (2), [Ni(L)(adi)0.5(H2O)]·0.5(adi)·2.5H2O (3), and [Zn2(L)(adi)2]·5H2O (4) (L, tetrakis(imidazol-1-ylmethyl)methane; fum, fumarate; mal, malate; male, maleate; adi, adipate) have been synthesized under hydrothermal condition and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. In compound 1, the L, fum, and mal connect the Ni(II) atoms to form a three-dimensional framework. Topologically, the compound shows a trinodal (3,4)-connected (4·102)(42·82·102)(42·84) net. Interestingly, the fum and mal came from the configuration transformation and addition reaction of maleate during the synthesis, respectively. In compound 2, the L ligands link the Zn(II) centers to generate a 2D layer, which are further connected by the male ligands to furnish a 3D chrial 4-connected (3·75) net. In compound 3, the adi ligands and the L ligands link the Ni(II) centers to form a 3D framework. Topologically, compound 3 displays a (4,5)-connected net with the Schläfli symbol of (42·52·62)(42·53·64·7). In compound 4, the L and adi ligands link the binuclear Zn(II) clusters to yield an intricate 3D (3,6)-connected net with the Schläfli symbol of (4·62)(43·612). The fluorescence and thermal stability of complexes 1-4 have also been investigated.  相似文献   

5.
Five new gallium arsenate compounds [C2N2H10][Ga(H2AsO4)(HAsO4)2]·H2O, I; [C2N2H10][Ga(OH)(AsO4)]2, II; [C2N2H10][GaF(AsO4)]2, III; [C3N2H12][Ga(OH)(AsO4)]2, IV; [Ga2F3(AsO4)(HAsO4)]·2H3O, V, have been synthesized under hydrothermal conditions and the structures determined employing single crystal X-ray diffraction studies. All the structures consist of octahedral gallium and tetrahedral arsenate units connected together forming a hierarchy of structures. Thus, one- (I), two- (II and IV) and three-dimensionally (III and V) extended structures have been observed. The Ga-O(H)/F-Ga connectivity in some of the structures suggests the coordination requirements posed by the octahedral gallium in these compounds. The observation of only one type of secondary building unit in the structures of III (SBU-4) and V (spiro-5) is unique and noteworthy. All the compounds have been characterized by a variety of techniques that include powder XRD, IR, and TGA.  相似文献   

6.
A series of heterobimetallic polymeric complexes of manganese, cobalt, zinc, cadmium and nickel, [M(Mo2O5L2)(MeOH)2(H2O)2]n·nH2O {M = Mn (2), n = 1, Co (3), n = 0, Zn (4), n = 1 and Cd (5), n = 1} and [Ni(Mo2O5L2)(MeOH)(H2O)3]n·2H2O·MeOH (6) have been synthesized form the reaction of [{Na4(H2O)4(μ-H2O)2} ⊂ (Mo2O5L2)2] (1) {LH2 = 2-(3,5-di-tert-butyl-2-hydroxybenzylamino)acetic acid} with the corresponding metal salts. The complexes have been structurally characterized. The Complexes, 3 and 6 undergo thermal decomposition to afford mixed oxides of the type, MMoO4·MoO3 {M = Co or Ni}.  相似文献   

7.
Hydrothermal reactions were used in the preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class. Compound 1, [{Cu2(bpa)2(C2O4)}2V4O12]·H2O, is molecular, while [{Cu(terpy)}2V6O17] (2), [Cu2(bpyrm)V4O12] (4) and [{Cu(phen)(H2O)2}VOF4(H2O)]·2H2O (5) are two-dimensional, three-dimensional and one-dimensional, respectively (bpa = 2,2′-bipyridylamine; terpy = 2,2′:6,2″-terpyridine; bpyrm = 2,2′-bipyrimidine; phen = 1,10-phenanthroline). In contrast to the 2-D structure of 2, the Ni(II) analogue [{Ni(terpy)}2V4O12]·2H2O (3) is one-dimensional. The {V4O12}4− cluster is a building block of structures 1, 3, and 4 while 2 is constructed from {V6O17}4− rings.  相似文献   

8.
Four new hetero-bimetallic Co3+-Na+ and Co3+-K+ coordination polymers having the molecular formulae [Na(H2O)Co(L)(N3)3]n (1), [Na2Co(L)(N3)3(H2O)5][Co(L)(N3)3] (2), K[Co(L)(NCS)3]·H2O (3) and K[Co(L)2][Co(NCS)4]·0.5H2O (4), were synthesized. Compounds 1-4 were characterized by single crystal X-ray diffraction, IR, UV-Vis, and thermogravimetric methods. These bimetallic systems have EE, EO azide bridge (1, 2) as well as bent (1, 2, 3) and linear (1, 4) aquo bridges. Important features observed among them were: a Z-shaped and diamond-shaped Co2Na2 clusters in 1, a centrosymmetric double ladder like polymer based on Na4 cluster in 2, and a linear KOK core having paddle-wheel structure in 4.  相似文献   

9.
Five new open-framework compounds of gallium have been synthesized by hydrothermal methods and their structures determined by single crystal X-ray diffraction studies. The compounds, [C8N4H26][Ga6F4(PO4)6], I, [C5N3H11][Ga3F2(PO4)3]·H2O, II, [C6N3H19][Ga4(C2O4)(PO4)4(H2PO4)]·2H2O, III, [Ga2F3(HPO4)(PO4)]·2H3O, IV, and [C3N2H5]2[Ga4(H2O)3(HPO3)7], V, possess three-dimensional structures. All the compounds are formed by the connectivity between the Ga polyhedra and phosphite/phosphate units. The observation of SBU-6 (I and II) and spiro-5 (IV) secondary building units (SBUs) are noteworthy. The flexibility of the formation of gallium phosphate frameworks has been established by the isolation of two related structures (I and II) from the same SBU units but different organic amines. Some of the present structures have close resemblance to the gallium phosphate phases known earlier. The compounds have been characterized by CHN analysis, powder XRD, IR, and TGA.  相似文献   

10.
The crystallization of 2,3-dihydro-thieno[3,4-b][1,4] dioxine-5,7-dicarboxylic acid (H2tddc) with divalent transitional metal (Co, Ni, Zn, Cd) or with tervalent lanthanide metal (Sm) and with mixed ligand 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (1,10-phen) formed six new complexes: [Co(C8H4O6S) · 3H2O] (1), [Co(C8H4O6)(1,10-phen)(H2O)] · H2O (2), [Ni(C8H4O6S)(4,4′-bipy)(H2O)] · 3H2O (3) [Sm(C8H4O6S)(NO3)(H2O)4] · 2H2O (4), [Zn(C8H4O6S)(H2O)3] (5), and [Cd2(C8H4O6S)2(4,4′-bipy)2] (6). The structures of these six crystals have been characterized by single-crystal X-ray diffraction analyses, which revealed that complexes 1, 4, 5 are all one-dimensional chain structures and they self-assemble into three-dimensional super-molecules via the hydrogen bond interactions and π-π stacking interactions, 2 is also a one-dimensional chain structure but still self-assembles into one-dimensional double-chains, the complex 3 has two-dimensional undulating parallelogram grid structure extended along the bc-plane, the crystal of 6 is a 3D threefold interpenetration topology framework with 46638 nodes. The photoluminescent properties of the H2tddc ligand and the six compounds have been measured in the solid state at room temperature. Free ligand has no luminescence, while its complexes 1, 4, and 6 all exhibit intense photoluminescence which implies that these complexes may be excellent candidates for potential photoactive materials.  相似文献   

11.
The reaction of NiCl2·6H2O with a hemilabile diaminodiamide ligand 4,7-diazadecanediamide gave a pale blue compound [Ni(C8H18N4O2)(H2O)2]·2Cl (1). In basic solution, 1 was transformed to a yellow species [Ni(C8H16N4O2)]·3H2O (2) by the Ni-O to Ni-N bond rearrangement at two amide sites of the complex. Structures of 1 and 2 were characterized by single-crystal X-ray diffraction analysis. Structural data for 1 indicated that the nickel atom adopts a six-coordinated N2O4 environment and gives an octahedral geometry. The structure of 2 showed that the nickel atom adopts a four-coordinated N4 environment, giving a square-planar geometry. Compounds 1 and 2 are structurally switchable in response to pH in an aqueous solution. The results presented could be useful in the design of new Ni(II)-based switching materials.  相似文献   

12.
Four new polyoxometalate compounds, namely [Cu2(pyrazine)4][Cu(pyrazine)2][PMo12O40] · 2H2O (1), {[K(H2O)2]4H8PW12O44}F · 8H2O (2), H9[K2KMo36O112(H2O)34] · 35H2O (3), and H3Na3[V10O28] · 15H2O (4), were prepared and characterized by single crystal X-ray diffraction, elemental analysis and IR spectroscopy. Single crystal X-ray diffraction analysis results reveal that, in compound 1, Keggin anion of [PMoO12O40]3− is enchased in the bowl-like Cu(I)-pyrazine intervals via weak interactions between terminal oxygen atoms and cations of Cu(I). For compound 2, a three-dimensional architecture with pores of 7.70 × 7.70 Å is constructed from the anions of [PW12O44]11− cross-linked via corner-sharing alkali cations of K+. The [Mo36O112(H2O)16]12− units of compound 3 are linked to form one wave-like chain via cations of K+. Whereas, in compound 4, anions of [V10O28]3− are linked via NaO6 octahedra to form two-dimensional layer structure. On the basis of this two-dimensional layer, a three-dimensional architecture is further formed via hydrogen bonds involving edge-shared NaO6 double octahedron.  相似文献   

13.
Four octamolybdate-based compounds, that is, CuII2(L1)4(Mo8O26) (1), CuII2(HL2)4(Mo8O26)2 (2), [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (3) and [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (4) (L1 = 2-(2-pyridyl)imidazole, L2 = 2-(1-(pyridine-3-ylmethyl)-1H-imidazol-2-yl)pyridine), have been hydrothermally synthesized via changing the reaction conditions and structurally characterized by single-crystal X-ray diffraction. With L1 ligand, we obtained compound 1, which is a 0D molecule and extends to a 3D supramolecular structure via hydrogen-bonding interactions. By using L2 instead of L1 ligand, compound 2 comes into being which is as well a discrete molecule and further extended to a 3D supramolecular structure by hydrogen bonds. Intriguingly, compounds 3 and 4 are supramolecular isomers: the former is a 2D 4-connected network and the latter is a 3D (3,4)-connected framework. The measurements of diffuse reflectance for compounds 1-4 indicate that they are potential wide gap semiconductors.  相似文献   

14.
The hydrothermal reaction of the dimolybdenum(V) Na2[Mo2O3S(HNTA)2] · 6H2O (1) and the lanthanide(III) ion yield the neutral trimolybdenum(IV) heterometalic cluster, [(H2O)8NdMo3O3S(HNTA)2(NTA)] · 7H2O (2) (NTA = nitrilotriacetato ligand). The addition reaction of Ag+ and [Mo3O4(C2O4)3(H2O)3]2− affords the anionic heterometallic cluster in N(C2H5)4[Ag(H2O)3Mo3O4(C2O4)3(H2O)3] · 5H2O (3). The H-bonded self-assemblies of the resulting asymmetric and larger heterometallic clusters form the 2D layered structure and 3D supramolecular open framework in 2 and 3, respectively, with larger pores to be stabilized by water clusters. These water clusters appear as (H2O)4 and (H2O)18 in 2 and (H2O)22 in 3.  相似文献   

15.
Reaction of vanadium(III) chloride with 8-quinolinol (Hqn) gave a mononuclear vanadium(IV) complex, [VOCl2(H2O)2] 1) · 2H2qn · 2Cl · CH3CN, and three dinuclear vanadium(IV) complexes: [V2O2Cl2(qn)2(H2O)2] (2) · Hqn, [V2O2Cl2(qn)2(C3H7OH)2] (3), and [V2O2Cl2(qn)2(C4H9OH)2] (4). Reaction of vanadium(III) chloride with 5-chloro-8-quinolinol (HClqn) gave four dinuclear vanadium(IV) complexes: [V2O2Cl2(Clqn)2(H2O)2] (5) · 2HClqn, [V2O2Cl2(Clqn)2(C3H7OH)2] (6), [V2O2Cl2(Clqn)2(C6H5CH2OH)2] (7), and [V2O2Cl2(Clqn)2(C4H9OH)2] (8) · 2C4H9OH. Reaction of vanadium(III) chloride with 5-fluoro-8-quinolinol (HFqn) gave two dinuclear vanadium(IV) complexes: [V2O2Cl2(Fqn)2(H2O)2] (9) · HFqn · 2H2O and V2O2Cl2(Fqn)2(C3H7OH)2] (10). X-ray structures of 1 · 2H2qn · 2Cl · CH3CN, 3, 4, 6, 7, 8 · 2 t-BuOH, and 10 have been determined. As to the mononuclear species 1 · 2H2qn · 2Cl · CH3CN, coordination of Hqn to vanadium does not occur, but protonation to Hqn occurs to give H2qn+, which links 1’s through hydrogen bonding, while each of the dinuclear species has a terminal and a bridging qn (or Clqn, Fqn) ligand, giving rise to a (V-O)2 ring. Magnetic measurements of 3, 4, 6, 7, and 10 in solid form show very weak antiferromagnetic behavior, and the effective magnetic moments are close to spin only value (2.44) of d1-d1 system, while ESR of 3 in THF shows dissociation to monomeric species. Change from mononuclear, 1, to dinuclear, 2, species was followed by the change of electronic spectrum.  相似文献   

16.
Jun Zhao  Li Xu 《Inorganica chimica acta》2008,361(8):2385-2395
A series of porous supramolecular complexes (Hoxine)2 · [Mo3O4(C2O4)3(H2O)3] · 5H2O (1),(Hphen)2 · [Mo3O4(C2O4)3(H2)3]  · 0.5C2H5OH · 7H2O (2), H2bpy · [Mo3O4(C2O4)3(H2O)3] · 2.5H2O (3), H2TTD · [Mo3O4(C2O4)3(H2O)3] · C2H5OH · 3H2O (4), (oxine = 8-hydroxyquinoline, phen = 1,10-phenanthroline, bpy = 4,4′-bipyridine, TTD = triethylene diamine) have been prepared and characterized by single-crystal X-ray crystallography, elemental analysis and infrared spectroscopy. Self-assembly of [Mo3O4(C2O4)3(H2O)3]2− directed by H-bonding association between the coordination water molecules and oxalate groups forms 2-D host H-bonded single layer in 1, double layer in 2 and 3, and undulated layer in 4 depending on the nature of the guest protonated N-heterocycles. Unlike cis-Hoxine+ or Hphen+ that employs lattice water molecules H-bonded to them to interconnect the host layers, trans-H2bpy2+ or H2TTD2+ acts a linker between the neighboring host layers to form 3-D supramolecular frameworks with channeled structures wherein the guest protonated cations are located.  相似文献   

17.
The reaction of Ni(ClO4)2·6H2O with 3,5-dichloro-2-hydroxy-benzylaminoacetic acid (H2dchaa), NaN3 and triethylamine in methanol solution or water solution under solvothermal methods leads to the formation of two completely different NiII compounds: [HN(C2H5)3]8·[Ni4(dchaa)4(N3)4]2 (1) and [HN(C2H5)3]2·[Ni3(dchaa)4(H2O)4]2·(H2O)2 (2). The complexes 1 and 2 have been characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction. Structure analyses reveal that complex 1 is a cubane cluster, while the complex 2 is a linear trinuclear cluster. The magnetic investigation shows that complexes 1 and 2 exhibit a ferromagnetic coupling between NiII ions. Ac susceptibilities of 1 and 2 reveal no frequency-dependent out-of-phase signals and the corresponding magnetic properties were discussed.  相似文献   

18.
In air, hydrated ethanolic (95%) solution of 2-(aminomethyl) substituted pyridine and quinoline, on stirring with half equivalent of Cu(OAc)2·H2O, respectively afforded [Cu(bpca)(OAc)(H2O)]·H2O (1) and [Cu(bqca)(OAc)(H2O)] (2) {bpca = bis(2-pyridylcarbonyl)diimide ion and bqca = bis(2-quinolylcarbonyl)diimide ion} in good yields. These reactions involve oxidation of the methylene group and formation of the bond between nitrogen and carbon in N-C(O) through coupling. The complex [Cu(pqca)(OAc)(H2O)]3[Cu2(OAc)4(EtOH)2]1.5 (3) {pqca = (2-pyridylcarbonyl)(2-quinolylcarbonyl)diimide ion} was synthesized by stirring an ethanolic solution of the Schiff base [(2-pyridyl)-N-((2-quinolyl)methylene)methanamine] (L1) and with one equivalent of Cu(OAc)2·H2O. A plausible mechanism for the conversion has been proposed. The free ligands were isolated as crystalline solids from compounds 1-3, by extrusion of Cu2+ ion using EDTA2−. The molecular structures of 1-3 and bqcaH were established by X-ray crystallography and compounds having quinolyl group have π-stacking interactions.  相似文献   

19.
Ten transition metal coordination complexes [Cu2(phen)(p-tpha)(μ-O)]n1, [Cu(m-tpha)(imH)2]n2, [Ni(5-Haipa)2(H2O)2]n3, [Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O 4, [Co(2,5-pdc)(H2O)2]n·nH2O 5, [Co2(2,5-pdc)2(H2O)6]n·2nH2O 6, [Fe(2,5-Hpdc)2(H2O)2]·H2O 7, [Co(C6H4NO2)3]·H2O 8, [Fe22-btec)(μ2-H2btec)(bipy)2(H2O)2]n9, [Mn(phen)(2,5-pdc)(H2O)2]·H2O 10 (H4btec = 1,2,4,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, 2,5-H2pdc = 2,5-pyridine-dicarboxylic acid, p-tpha = p-phthalic acid, m-tpha = m-phthalic acid, bipy = 2,2′-bipyridine, 5-H2aipa = 5-aminoisophthalic acid, imH = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid) were synthesized through hydrothermal method. They were characterized by UV-Vis absorption spectra, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicated that the complexes 1, 2, 3, 5, 6 and 9 were linked into infinite structures bridged by organic acid ligands. The other four complexes were molecular complexes and further connected to 2D or 3D structures by the hydrogen bonds. The SPS of complexes 1-10 indicate that there are positive response bands in the range of 300-800 nm showing different levels of photo-electric conversion properties. The intensity, position, shape and the number of the response bands in SPS are obviously different since the structure, species, valence, dn electrons configuration and coordinated environment of the center metals are different. There are good relationships between SPS and UV-Vis spectra.  相似文献   

20.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号