首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The iron(II) compound of formula [Fe(NCS)2(dena)2]n (dena = N,N′-diethylnicotinamide) has been prepared by the reaction between iron(III) thiocyanate and dena in ethanol solution. The complex was characterized by elemental analysis, spectral and magnetic measurements. Single-crystal X-ray diffraction methods show that the complex, crystallizing in the triclinic space group, undergoes a phase transition between 220 K and 230 K, connected with the doubling of cell volume. Crystal structures at 230 K (1a; HT phase) and 150 K (1b; LT phase) are described and a transition mechanism is discussed. In both phases the compound has an extended chain structure, in which the neutral molecule of N,N′-diethylnicotinamide acts as a bridging ligand binding through pyridine N atom to one centre and through amide O atom to the neighbouring Fe centre. The Fe2+ ion has a slightly distorted trans-octahedral environment with FeO2N4 chromophore, and all Fe-O and Fe-N bonds in the typical for high-spin iron(II) compounds range. Variable-temperature magnetic susceptibility data in the temperature range 1.8-300 K show that iron(II) is high-spin S = 2(5T2g) and as a result effects due to zero-field splitting are anticipated at low temperatures. The IR spectrum suggested the coordination of N,N′-diethylnicotinamide to the central atom of iron(II) as a bridging ligand and NCS group as a monodentate ligand.  相似文献   

2.
The iron(III) complexes of the tridentate N3 ligands pyrazol-1-ylmethyl(pyrid-2-ylmethyl)amine (L1), 3,5-dimethylpyrazol-1-ylmethyl(pyrid-2-ylmethyl)amine (L2), 3-iso-propylpyrazol-1-ylmethyl(pyrid-2-ylmethyl)amine (L3) and (1-methyl-1H-imidazol-2-ylmethyl)pyrid-2-ylmethylamine (L4) have been isolated and studied as functional models for catechol dioxygenases. They have been characterized by elemental analysis and spectral and electrochemical methods. The X-ray crystal structure of the complex [Fe(L1)Cl3] 1 has been successfully determined. The complex possesses a distorted octahedral coordination geometry in which the tridentate ligand facially engages iron(III) and the Cl ions occupy the remaining coordination sites. The Fe-Npz bond distance (2.126(5) Å) is shorter than the Fe-Npy bond (2.199(5) Å). The systematic variation in the ligand donor substituent significantly influences the Lewis acidity of the iron(III) center and hence the interaction of the present complexes with a series of catechols. The catecholate adducts [Fe(L)(DBC)Cl], where H2DBC = 3,5-di-tert-butylcatechol, have been generated in situ and their spectral and redox properties and dioxygenase activities have been studied in N,N-dimethylformamide solution. The adducts [Fe(L)(DBC)Cl] undergo cleavage of DBC2− in the presence of dioxygen to afford major amounts of intradiol and smaller amounts extradiol cleavage products. In dichloromethane solution the [Fe(L)(DBC)Cl] adducts afford higher amounts of extradiol products (64.1-22.2%; extradiol-to-intradiol product selectivity E/I, 2.6:1-4.5:1) than in DMF (2.5-6.6%; E/I, 0.1:1-0.4:1). The results are in line with the recent understanding of the function of intra- and extradiol-cleaving catechol dioxygenases.  相似文献   

3.
Syntheses and room-temperature single crystal X-ray structural characterizations are recorded for a variety of silver(I) oxyanion (perchlorate, nitrate and trifluoroacetate (‘tfa’) (increasing basicity)) adducts, AgX, with a number of pyridine (‘py’) bases, L, functionalized in the 2-position with N- or O-donor groups, namely 2-amino-, 2-amino-6-methyl-, 2-aminomethyl-, 2-hydroxy-, 2-methoxy- and 2-acetyl- pyridines, ‘2np’, ‘nmp’, ‘amp’, ‘ohp’, ‘mop’, and ‘acp’. A variety of stoichiometries and associated structural types are defined: [Ag(chelate)2]X, L/X = amp,acp/ClO4, [XAg(chelate)2], L/X = acp/tfa, of 1:2 AgX:L stoichiometry; for 1:1 stoichiometry, although a discrete mononuclear complex [(chelate)Ag(O2NO)] is defined for AgNO3: acp (1:1), all others are polymers, successive silver atoms being linked by N,N′-bridging ligands singly (L/X = 2np/ClO4 (?HAgHTAgTHAgH?), amp/ClO4, NO3 (?HTAgHTAg?) (‘H’ ≡ head, ‘T’ = tail)) or pairwise, ?L2AgX2AgL2Ag? (L/X = 2np/tfa, nmp/NO3). More complex polymeric arrays are found with L/X = ohp/NO3, tfa, where interaction with the metal takes place via the O-donor only, the py functionality being protonated, and in adducts of more complex stoichiometry AgNO3:mop (2:3) and AgNO3:2np (3:4).  相似文献   

4.
Two new iron(II) five-coordinated porphyrin complexes [Na(2,2,2-crypt)] [FeII(TpivPP)(NCO)] (1) (TpivPP = α,α,α,α-tetrakis(o-pivalamidophenyl) porphyrin known as picket fence porphyrin and 2,2,2-crypt is the cryptand-222) and [K(2,2,2-crypt)][FeII(TpivPP)(NCS)] (2) have been prepared and characterized. The UV-Vis and IR spectroscopic data are consistent with a cyanato-N and thiocyanato-N ferrous porphyrinates. The Mössbauer data and the X-ray structural analysis indicate that the Fe(II) cation in 1 and 2 is high-spin (S = 2) and has the (dxy)2(dxz)1(dyz)1(dz2)1(dx2-y2)1 ground state electronic configuration.For complex 1, the average equatorial iron-pyrrole N bond length (Fe-Np = 2.120(2) Å), the distance between the iron and the 24-atom mean plane of the porphyrin ring (Fe-PC = 0.6805(7) Å) and the distance between the iron and the plane made by the four pyrrole nitrogens (Fe-PN = 0.5923(12) Å) are longer than those of complex 2 and similar five-coordinated Fe(II) high-spin porphyrinates. This is probably due to the significant electronic repulsion of the dx2-y2 and dxy orbitals by the negative charge of the pyrrole N atoms in case of 1.  相似文献   

5.
This work summarizes the results of our studies on the structural, spectral and redox properties of a mononuclear zinc(II) complex with the new H2L ligand (H2L = N,N′,N,N′-bis[(2-hydroxy-3,5-di-tert-butylbenzyl)(2-pyridylmethyl)]-ethylene diamine). The crystal structure of the complex [ZnII(HL)] · ClO4 (1) was determined by X-ray crystallographic analysis. The structure of this complex consists of a discrete mononuclear cation [ZnII(HL)]+, in a strongly distorted geometry with a slight tendency toward a distorted square pyramidal geometry, as reflected by the structural index parameter τ of 0.44. The zinc(II) cation is coordinated to one oxygen and four nitrogen atoms: the pyridine nitrogen atoms (N22 and N32), tertiary amine nitrogen atoms (N1 and N4) and phenolate oxygen atom (O10). 1H and 13C NMR spectral data show a rigid solution structure for 1 in agreement with X-ray structure. Potentiometric studies of complex 1 were also performed and revealed three titratable protons which are attributed to the protonation/deprotonation of two phenol groups (p[K]a1 = 4.04 and p[K]a3 = 11.34) and dissociation of a metal-bound water molecule (p[K]a2 = 7.8). The phenolate groups in complex 1 are suitably protected by bulky substituents (tert-butyl) in the ortho- and para-positions, which through electrochemical oxidation generate a one-electron oxidized phenoxyl species in solution. This radical species was characterized by UV-Vis, EPR and electrochemical studies. The Zn(II)-phenoxyl radical species is of bioinorganic relevance, since its spectroscopic, redox and reactivity properties can be used to establish the role of phenoxyl radicals in biological and catalytical systems.  相似文献   

6.
Reaction of nickel (II) perchlorate with the ligand N,N′-bis-(3,5-dipiperidin-1-yl-[2,4,6]triazin-1-yl)-pyridin-2-ylmethyl-ethane-1,2-diamine yields an octahedral Ni(II) high-spin complex 1 ([C40H56N14Ni(H2O)(CH3OH)](ClO4)2(CH3OH)2) with moderate zero-field splitting (ZFS) axial distortion parameter D/kB = 5.37 K. The ligand contributes a N4 donor set; the remaining two coordinating positions are occupied by coordinating solvents molecules. Exchange of the coordinating solvents molecules in complex 1 to thiocyanate moieties leads to formation of complex 2 ([C40H56N14Ni(NCS)2](CHCl)3) with an extended parameter D/kB = 8.80 K. The analysis of the structural and magnetic properties of complexes 1 and 2 led to the design of dinuclear complex 3 ([C40H56N14NiN3]2(ClO4)2(CH3OH)2), where two azido groups were utilized as bridging ligands. The double azido bridges in complex 3 cross each other to form a rarely observed non-coplanar (N3)2 structure. The magnetic behavior of complex 3 reveals ferromagnetic coupling interactions characterized by J/kB = 23.25 K, D1/kB = 7.90 K, D2/kB = 0.54 K.  相似文献   

7.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

8.
Synthesis, physical properties and X-ray structure of a hydrated tetranuclear copper(II) complex [Cu4(μ-diph)2(μ-H2O)2(O2CCH3)4(H2O)2]·4H2O with N,N′-bis(picolinoyl)hydrazine (H2diph) are reported. The centrosymmetric complex has two types of copper(II) centres with distorted square-pyramidal N2O3 coordination spheres. The dinucleating trans planar diph2− ligands are parallel to each other and act as N2O-donor to one metal centre and N2-donor to the other metal centre. The complex has a rectangular {Cu4(μ-N-N)2(μ-OH2)2} core with Cu···Cu distances as 4.834(1) and 3.762(1) Å. Solid state as well as solution electronic spectra show several transitions in the wavelength range 700-280 nm. The room temperature (298 K) solid state magnetic moment is 3.55 μB. The powder EPR spectra at 298 and 130 K are very similar and axial (g = 2.25 and g = 2.08) in character.  相似文献   

9.
The synthesis, magnetic properties and single crystal study of a new spin crossover compound [Fe(EPPA)(bpym)](ClO4)2 with EPPA = N-(2-aminoethyl)-N-(3-aminopropyl)-2-(aminomethyl)pyridine, bpym = 2,2′-bipyrimidine are reported. Variable-temperature magnetic susceptibility data collected in the temperature range 10-294 K reveal the occurrence of a relatively cooperative spin transition with T1/2 = 108 K. The crystal structure of [Fe(EPPA)(bpym)](ClO4)2 was determined by single-crystal X-ray diffraction method. The structure of the complex consists of mononuclear [Fe(EPPA)(bpym)](ClO4)2 units. The potentially bis-bidentate bpym ligand acting as a bidentate one, is coordinated to iron(II) in cis-position by two nitrogen atoms. The four remaining positions in the pseudooctahedral [FeN6] core are occupied by one pyridinic and three aliphatic nitrogens of the EPPA ligand. The network of cooperative links in the crystal lattice is represented by H-bonding and π stacking interactions.  相似文献   

10.
The structures of the solvated iron(II) and iron(III) ions have been studied in solution and solid state by extended X-ray absorption fine structure (EXAFS) in three oxygen donor solvents, water, dimethylsulfoxide (Me2SO), N,N′-dimethylpropyleneurea (DMPU), and one sulfur donor solvent, N,N-dimethylthioformamide (DMTF); these solvents have different coordination and solvation properties. In addition, the structure of hexakis(dimethylsulfoxide)iron(III) perchlorate has been determined crystallographically to support the determination of the corresponding solvate in solution. The hydrated, the dimethylsulfoxide and N,N-dimethylthioformamide solvated iron(II) ions show regular octahedral coordination in both solution and solid state with mean Fe-O, Fe-O, and Fe-S bond distances of 2.10, 2.10, and 2.52 Å, respectively, whereas the N,N′-dimethylpropyleneurea iron(II) solvate is five-coordinated, d(Fe-O) = 2.06 Å. The compounds vary in color from light green (hydrate) to dark orange or red (DMPU). The hydrated iron(III) ion in aqueous solution and the dimethylsulfoxide solvated iron(III) ions in solution and solid state show the expected octahedral coordination, the Fe-O bond distances are 2.00 Å for both, whereas the N,N′-dimethylpropyleneurea iron(III) solvate is found to be five-coordinated with a mean Fe-O bond distance of 1.99 Å. The N,N-dimethylthioformamide solvated iron(III) ion in the solid perchlorate salt is tetrahedrally four-coordinated, the mean Fe-S bond distance is 2.20 Å. Iron(III) is reduced with time to iron(II) in N,N-dimethylthioformamide solution. The compounds vary in color from pale yellow (hydrate) to blackish red (DMPU).  相似文献   

11.
Reactions of the 1:2 condensate (L) of benzil dihydrazone and 2-acetylpyridine with Hg(ClO4)2 · xH2O and HgI2 yield yellow [HgL2](ClO4)2 (1) and HgLI2 (2), respectively. Homoleptic 1 is a 8-coordinate double helical complex with a Hg(II)N8 core crystallising in the space group Pbca with cell dimensions: a = 16.2250(3), b = 20.9563(7), c = 31.9886(11) Å. Complex 2 is a 4-coordinate single helical complex having a Hg(II)N2I2 core crystallising in the space group P21/n with cell dimensions a = 9.8011(3), b = 17.6736(6), c = 16.7123(6) Å and β = 95.760(3)o. In complex 1, the N-donor ligand L uses all of its binding sites to act as tetradentate. On the other hand, it acts as a bidentate N-donor ligand in 2 giving rise to a dangling part. From variable temperature 1H NMR studies both the complexes are found to be stereochemically non-rigid in solution. In the case of 2, the solution process involves wrapping up of the dangling part of L around the metal.  相似文献   

12.
In this work we present the synthesis and characterization of the complex dichloro[N-propanoate-N,N-bis-(2-pyridylmethyl)amine]iron(III) [FeIII(PBMPA)Cl2]. The ligand LiPBMPA was synthesized through the Michael reaction of BMPA with methylacrylate, followed by alkaline hydrolysis. The complex [FeIII(PBMPA)Cl2] has been synthesized by the reaction of the ligand with FeCl3 · H2O and was mainly characterized by cyclic voltammetry, conductivimetry, and electronic, infrared and Mössbauer spectroscopies, and by X-ray structural analysis, which showed an iron center coordinated by one carboxylate oxygen in a monodentate way, one tertiary amine, two pyridine groups and two chloride ions. It has been proposed that in water the chloride ligands are shifted by the solvent molecules and the species [FeIII(PBMPA)(H2O)2]Cl2 is predominant. The catalase-like activity of the complex was tested in water, and it proved to be active in the hydrogen peroxide dismutation. Kinetics studies were conducted following the initial rates method. The reaction is first order in relation to both the complex and the hydrogen peroxide. Based on the presence of a lag phase that depends on the initial complex concentration, we propose that the active species that shows in situ catalase-like activity, is a binuclear complex.  相似文献   

13.
We present here the syntheses of two dinuclear iron(III) complexes with the polydentate N,O-donor ligand H2BPClNOL (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2- hydroxy)]propylamine). The reaction between FeIII(ClO4)3 · 9H2O, the title ligand and two equivalents of NaOAc · 3H2O resulted in the complex . When the synthesis was performed with a lesser amount of NaOAc · 3H2O (half equivalent), the complex without bridging acetate, was obtained. The complexes were characterized by X-ray structural analysis, magnetochemistry, Mössbauer and UV-Vis spectroscopies, and electrochemistry. Complex 2 was also characterized in solution through potentiometric titration. Both complexes crystallize in the monoclinic system. Complex 2 has one water molecule coordinated to each iron centre. Their pKa values are 5.00 and 7.03 for the first protonation/deprotonation equilibrium of each coordinated water molecule. The UV-Vis and electrochemical techniques showed that the absence of an acetate bridge in 2 results in a significant difference in the Lewis acidity of both iron centres, when compared with 1. The lack of an acetate bridge in 2 also results in changes in the anti-ferromagnetic coupling as revealed by magnetic measurements. Complex 2 is an interesting structural model for the active site of iron containing PAPs, since it has an Fe(-alkoxo)2Fe core with an FeIII?FeIII distance of 3.122(1) Å, containing phenolate and water molecules coordinated to the iron centres and is soluble in aqueous solutions. Furthermore, the UV-Vis properties of 2 are similar to those of PAPs, since the complex absorbs at 580 nm in the oxidized form (550-570 nm for PAPs) and at 499 nm in the mixed-valence form (505-510 nm for PAPs) as revealed through spectroelectrochemical studies. Finally, complex 2 successfully promoted the hydrolytic cleavage of plasmid DNA under aerobic and anaerobic conditions, producing single and double DNA strand breaks at biological pH values.  相似文献   

14.
The in-situ formed hydrazone Schiff base ligand (E)-N′-(2-oxy-3-methoxybenzylidene)benzohydrazide (L2−) reacts with copper(II) acetate to a tetranuclear open cubane [Cu(L)]4 complex which crystallizes as two symmetry-independent (Z′ = 2) S4-symmetrical molecules in different twofold special positions with a homodromic water tetramer. The two independent (A and B) open- or pseudo-cubanes with Cu4O4 cores of 4 + 2 class (Ruiz classification) each have three different magnetic exchange pathways leading to an overall antiferromagnetic coupling with J1B = J2B = −17.2 cm−1, J1A = −36.7 cm−1, J2A = −159 cm−1, J3A = J3B = 33.5 cm−1, g = 2.40 and ρ = 0.0687. The magnetic properties have been analysed using the H = −Σi,jJij(SiSj) spin Hamiltonian.  相似文献   

15.
Two isomers of 1,8-bis(N-carbamoylethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L2) bearing two N-CH2CH2CONH2 groups, C-meso-L2 and C-racemic-L2, have been prepared and characterized. Each isomer reacts with Cu(II) ion to form a five-coordinate complex, [Cu(C-meso-L2)](ClO4)2 (1) or [Cu(C-racemic-L2)](ClO4)2 (2), in which only one pendent amide group is coordinated to the metal ion. The crystal structure of 1 · CH3CN shows that the complex possesses trans-III-type N-configuration and has a slightly distorted square-pyramidal coordination geometry with a relatively long axial Cu-O (N-CH2CH2CONH2) bond (2.207(3) Å). On the other hand, 2 exhibits trans-V configuration and has a slightly distorted trigonal bipyramidal coordination geometry with a very short equatorial Cu-O (N-CH2CH2CONH2) bond (2.007(3) Å); the Cu-O distance is distinctly shorter than the Cu-N distances (2.062(4)-2.090(4) Å). The complex 1 exhibits a d-d transition band at approximately 565 nm, whereas the band for 2 is observed at approximately 770 nm.  相似文献   

16.
A iron(II) complex of the linear hexadentate N6 ligand H2L2-3-2, [Fe(H2L2-3-2)](ClO4)2, was synthesized and the spin crossover properties were investigated, where H2L2-3-2 denotes bis[N-(2-methylimidazol-4-yl)methylidene-2-aminoethyl]propanediamine. The complex showed a gradual and reversible one-step spin crossover (SCO) between the high-spin (S = 2) and low-spin (S = 0) states at T1/2 = 208 K without hysteresis. The crystal structures were determined at 296 and 250 K (HS state), 230, 210, and 200 K (intermediate between the HS and LS states) and 150 and 110 K (LS state). The spin transition from 296 to 150 K accompanies with the conformation change of the chelate rings at the triamine moiety and the formation of the hydrogen bond network in the same space group of orthorhombic Pbcn (no. 60). However, in the LS state at 110 K, the space group changed from orthorhombic Pbcn at 150 K (Pcan when the same axial setting to 110 K was used) to monoclinic P21/a (no. 14) at 110 K, although no spin transition and no change of assembly structure between 150 and 110 K were observed. It give us an idea that the space group transformation is mainly related to the conformational thermodynamic stability of the chelate rings at the triamine moiety and is not directly correlated with the spin transition.  相似文献   

17.
In this work, we present the synthesis and characterization of three mononuclear iron(III) complexes: dichloro[N-propanamide-N,N-bis-(2-pyridylmethyl)amine]iron(III) perchlorate (1), trichloro[N-methylpropanoate-N,N-bis-(2-pyridylmethyl)amine]iron(III) (2) and trichloro[bis-(2-pyridylmethyl)amine]iron(III) (3). The complexes were characterized by cyclic voltammetry, conductivimetry, elemental analyses, and by electronic, infrared and Mössbauer spectroscopies. Complex 1 was also characterized by X-ray structural analysis, which showed an iron center coordinated to one amide, one tertiary amine, two pyridine groups and two chloride ions. While for 1 the X-ray molecular structure and the infrared spectrum confirm the coordination of the amide group by the oxygen atom, the infrared spectrum of 2 indicates that the ester group present in the ligand is not coordinated, resulting in a N3Cl3 donor set, similar to the one present in 3. However, in 3 there is a secondary amine while in 2 a tertiary amine exists. These structural differences result in distinguishable variations in the Lewis acidity of the iron center, which could be evaluated by the analysis of the redox potential of the complexes, as well as by Mössbauer parameters. Thus, the Lewis acidity decreases in the following order: 1 > 2 > 3. It is important to notice that 1 has the amide group coordinated to the iron center, a feature present in metalloenzymes as lipoxygenase and isopenicillin N synthase, and in a small number of mononuclear iron(III) complexes.  相似文献   

18.
The complex formation between iron(III) and bromide has been studied calorimetrically in N,N′-dimethylpropyleneurea (DMPU), and the structure of the DMPU solvated tribromoiron(III) complex has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large angle X-ray scattering (LAXS), and in solid state by EXAFS and single crystal X-ray diffraction. The calorimetric study showed that iron(III) forms three medium strong bromide complexes in DMPU, and the thermodynamic pattern strongly indicates that all complexes are formed in entropy driven substitution reactions. In DMPU solution, the tribromoiron(III) complex has a regular trigonal planar configuration with a mean Fe-Br bond distance of 2.36 Å, and without any solvent molecules strongly bound to iron(III). In the solid state, however, the structure is a slightly distorted trigonal bipyramid, with one short and two slightly longer Fe-Br bonds, 2.37 and 2.44 Å, respectively, in a somewhat distorted trigonal plane, and two DMPU solvent molecules (mean Fe-O bond distance 1.98 Å) in the apical positions. The DMPU solution of iron(III) bromide and the [FeBr3(dmpu)2] crystals are both blackish red.  相似文献   

19.
A series of mononuclear iron(III) complexes with containing phenolate donor of substituted-salicylaldimine based ligands [Fe(L1)(TCC)] · CH3OH (1), [Fe(L2)(TCC)] · CH3OH (2), [Fe(L3)(TCC)] (3), and [Fe(L4)(TCC)] (4) have been prepared and studied as functional models for catechol dioxygenases (H2TCC = tetrachlorocatechol, or HL1 = N′-(salicylaldimine)-N,N-diethyldiethylenetriamine, HL2 = N′-(5-Br-salicylaldimine)-N,N-diethyldiethylenetriamine, HL3 = N′-(4,6-dimethoxy-salycyl-aldimine)-N,N-diethyl-diethylenetriamine, HL4 = N′-(4-methoxy-salicylaldimine)-N,N-diethyl-diethylenetriamine). They are structural models for inhibitors of enzyme-substrate adducts from the reactions of catechol 1,2-dioxygenases. Complexes 1-4 were characterized by spectroscopic methods and X-ray crystal structural analysis. The coordination sphere of Fe(III) atom of 1-4 is distorted octahedral with N3O3 donor set from the ligand and the substrate TCC occupying cis position, and Fe(III) is in high-spin (S = 5/2) electronic ground state. The in situ prepared iron(III) complexes without TCC, [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)Cl2], and [Fe(L4)Cl2] are reactive towards intradiol cleavage of the 3,5-di-tert-butylcatechol (H2DBC) in the presence of O2 or air. The reaction rate of catechol 1,2-dioxygenase depends on the redox potential and acidity of iron(III) ions in complexes as well as the substituent effect of the ligands. We have identified the reaction products and proposed the mechanism of the reactions of these iron(III) complexes with H2DBC with O2.  相似文献   

20.
Two novel monomeric [C18H17Cl3N2O2Fe] (1) and dimeric [C38H36N4O4Cl6Fe2] (2) Fe(III) tetradentate Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. In complex (1) the Schiff base ligand coordinates toward one iron atom in a tetradentate mode and each iron atom is five coordinated with the coordination geometry around iron atom which can be described as a distorted square pyramid. The presence of a short (2.89 Å) non-bonding interatomic Fe···O distances between adjacent monomeric Fe(III) complexes results in the formation of a dimer. Structural analysis of compound (2) shows that the structure is a centrosymmetric dimer in which the six coordinated Fe(III) atoms are linked by μ-phenoxo bridges from one of the phenolic oxygen atoms of each Schiff base ligand to the opposite metal center. The variable-temperature (2-300 K) magnetic susceptibility (χ) data of these two compounds have been investigated. The results show that for both complexes Fe(III) centers are in the high spin configuration (S = 5/2) and indicate antiferromagnetic spin-exchange interaction between Fe(III) ions. The obtained results are briefly discussed using magnetostructural correlations developed for other class of iron(III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号