共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Gene distribution and isochore organization in the nuclear genome of plants. 总被引:7,自引:4,他引:7 下载免费PDF全文
The genomic distribution of 23 nuclear genes from three dicotyledons (pea, sunflower, tobacco) and five monocotyledons of the Gramineae family (barley, maize, rice, oat, wheat) was studied by localizing these genes in DNA fractions obtained by preparative centrifugation in Cs2SO4/BAMD density gradients. Each one of these genes (and of many other related genes and pseudogenes) was found to be located in DNA fragments (50-100 Kb in size) that were less than 1-2% GC apart from each other. This definitively demonstrates the existence of isochores in plant genomes, namely of compositionally homogeneous DNA regions at least 100-200 Kb in size. Moreover, the GC levels of the 23 coding sequences studied, of their first, second and third codon positions, and of the corresponding introns were found to be linearly correlated with the GC levels of the isochores harboring those genes. Compositional correlations displayed increasing slopes when going from second to first to third codon position with obvious effects on codon usage. Coding sequences for seed storage proteins and phytochrome of Gramineae deviate from the compositional correlations just described. Finally, CpG doublets of coding sequences were characterized by a shortage that decreased and vanished with increasing GC levels of the sequences. A number of these findings bear a striking similarity with results previously obtained for vertebrate genes. 相似文献
4.
5.
6.
7.
The dynamics by which polymeric protein filaments divide in the presence of negligible growth, for example due to the depletion of free monomeric precursors, can be described by the universal mathematical equations of ‘pure fragmentation’. The rates of fragmentation reactions reflect the stability of the protein filaments towards breakage, which is of importance in biology and biomedicine for instance in governing the creation of amyloid seeds and the propagation of prions. Here, we devised from mathematical theory inversion formulae to recover the division rates and division kernel information from time-dependent experimental measurements of filament size distribution. The numerical approach to systematically analyze the behaviour of pure fragmentation trajectories was also developed. We illustrate how these formulae can be used, provide some insights on their robustness, and show how they inform the design of experiments to measure fibril fragmentation dynamics. These advances are made possible by our central theoretical result on how the length distribution profile of the solution to the pure fragmentation equation aligns with a steady distribution profile for large times. 相似文献
8.
9.
A conserved Drosophila transportin-serine/arginine-rich (SR) protein permits nuclear import of Drosophila SR protein splicing factors and their antagonist repressor splicing factor 1 下载免费PDF全文
Members of the highly conserved serine/arginine-rich (SR) protein family are nuclear factors involved in splicing of metazoan mRNA precursors. In mammals, two nuclear import receptors, transportin (TRN)-SR1 and TRN-SR2, are responsible for targeting SR proteins to the nucleus. Distinctive features in the nuclear localization signal between Drosophila and mammalian SR proteins prompted us to examine the mechanism by which Drosophila SR proteins and their antagonist repressor splicing factor 1 (RSF1) are imported into nucleus. Herein, we report the identification and characterization of a Drosophila importin beta-family protein (dTRN-SR), homologous to TRN-SR2, that specifically interacts with both SR proteins and RSF1. dTRN-SR has a broad localization in the cytoplasm and the nucleus, whereas an N-terminal deletion mutant colocalizes with SR proteins in nuclear speckles. Far Western experiments established that the RS domain of SR proteins and the GRS domain of RSF1 are required for the direct interaction with dTRN-SR, an interaction that can be modulated by phosphorylation. Using the yeast model system in which nuclear import of Drosophila SR proteins and RSF1 is impaired, we demonstrate that complementation with dTRN-SR is sufficient to target these proteins to the nucleus. Together, the results imply that the mechanism by which SR proteins are imported to the nucleus is conserved between Drosophila and humans. 相似文献
10.
Cytosine DNA methylation is an epigenetic mark frequently associated with silencing of genes and transposons. In Arabidopsis, the establishment of cytosine DNA methylation is performed by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2). DRM2 is guided to target sequences by small interfering RNAs (siRNAs) in a pathway termed RNA-directed DNA methylation (RdDM). We performed a screen for mutants that affect the establishment of DNA methylation by investigating genes that contain predicted RNA-interacting domains. After transforming FWA into 429 T-DNA insertion lines, we assayed for mutants that exhibited a late-flowering phenotype due to hypomethylated, thus ectopically expressed, copies of FWA. A T-DNA insertion line within the coding region of the spliceosome gene SR45 (sr45-1) flowered late after FWA transformation. Additionally, sr45-1 mutants display defects in the maintenance of DNA methylation. DNA methylation establishment and maintenance defects present in sr45-1 mutants are enhanced in dcl3-1 mutant background, suggesting a synergistic cooperation between SR45 and DICER-LIKE3 (DCL3) in the RdDM pathway. 相似文献
11.
Lin CL Leu S Lu MC Ouyang P 《Biochemical and biophysical research communications》2004,321(3):638-647
Pre-mRNA splicing takes place within a dynamic ribonucleoprotein particle called the spliceosome and occurs in an ordered pathway. Although it is known that spliceosome consists of five small nuclear RNAs and at least 50 proteins, little is known about how the interaction among the proteins changes during splicing. Here we identify that SR-cyp, a Moca family of nuclear cyclophilin, interacts and colocalizes with nuclear pinin (pnn), a SR-related protein involving in pre-mRNA splicing. Nuclear pnn interacts with SR-cyp via its C-terminal RS domain. Upon SR-cyp over-expression, however, the subnuclear distribution of nuclear pnn is altered, resulting in its redistribution from nuclear speckles to a diffuse nucleoplasmic form. The diffuse subnuclear distribution of nuclear pnn is not due to epitope masking, accelerated protein turnover or post-translational modification. Furthermore, we find that SR-cyp regulates the subnuclear distribution of other SR family proteins, including SC35 and SRm300, in a similar manner as it does on nuclear pnn. This result is significant because it suggests that SR-cyp plays a general role in modulating the distribution pattern of SR-like and SR proteins, similar to that of Clk (cdc2-like kinase)/STY on SR family splicing factors. SR-cyp might direct its effect via either alteration of protein folding/conformation or of protein-protein interaction and thus may add another control level of regulation of SR family proteins and modification of their functions. 相似文献
12.
13.
The dynamics of the thiol–disulphide redox proteome is central to cell function and its regulation. Altered mobility of proteins in the oxidized and reduced state allows the MS-based identification of those thiol–disulphide proteins that undergo major conformational changes. A proteomic approach was taken with thylakoid-bound, luminal and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-less stromal subproteome fractions of the chloroplast from Arabidopsis thaliana . Among the 49 verified polypeptides were 22 novel redox proteins, previously not reported as being part of the redox proteome. Among the redox-affected proteins were PsbA (D1), PsaA1 and PsaF, chloroplast monodehydroascorbate reductase and also the Deg1 protease. Recombinant Deg1 and Deg2 revealed redox dependence of their proteolytic activity. The data provide new insights into the redox network of the chloroplast. 相似文献
14.
15.
HIV-1 fusion with its target cells is mediated by the glycoprotein 41 (gp41) transmembrane subunit of the viral envelope glycoprotein
(ENV). The current models propose that gp41 undergoes several conformational changes between the apposing viral and cell membranes
to facilitate fusion. In this review we focus on the progress that has been made in revealing the dynamic role of the N-terminal
heptad repeat (NHR) and the C-terminal heptad repeat (CHR) regions within gp41 to the fusion process. The involvement of these
regions in the formation of the gp41 pre-hairpin and hairpin conformations during an ongoing fusion event was mainly discovered
by their derived inhibitory peptides. For example, the core structure within the hairpin conformation in a dynamic fusion
event is suggested to be larger than its high resolution structure and its minimal boundaries were determined in situ. Also,
inhibitory peptides helped reveal the dual contribution of the NHR to the fusion process. Finally, we will also discuss several
developments in peptide design that has led to a deeper understanding of the mechanism of viral membrane fusion. 相似文献
16.
17.
Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants 总被引:13,自引:0,他引:13 下载免费PDF全文
Nikiforova VJ Kopka J Tolstikov V Fiehn O Hopkins L Hawkesford MJ Hesse H Hoefgen R 《Plant physiology》2005,138(1):304-318
Sulfur is an essential macro-element in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of adaptive responses, which must be coordinated. To reveal the coordinating network of adaptations to sulfur deficiency, metabolite profiling of Arabidopsis has been undertaken. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques revealed the response patterns of 6,023 peaks of nonredundant ion traces and relative concentration levels of 134 nonredundant compounds of known chemical structure. Here, we provide a catalogue of the detected metabolic changes and reconstruct the coordinating network of their mutual influences. The observed decrease in biomass, as well as in levels of proteins, chlorophylls, and total RNA, gives evidence for a general reduction of metabolic activity under conditions of depleted sulfur supply. This is achieved by a systemic adjustment of metabolism involving the major metabolic pathways. Sulfur/carbon/nitrogen are partitioned by accumulation of metabolites along the pathway O-acetylserine to serine to glycine, and are further channeled together with the nitrogen-rich compound glutamine into allantoin. Mutual influences between sulfur assimilation, nitrogen imbalance, lipid breakdown, purine metabolism, and enhanced photorespiration associated with sulfur-deficiency stress are revealed in this study. These responses may be assembled into a global scheme of metabolic regulation induced by sulfur nutritional stress, which optimizes resources for seed production. 相似文献
18.
Saitoh N Sakamoto C Hagiwara M Agredano-Moreno LT Jiménez-García LF Nakao M 《Molecular biology of the cell》2012,23(6):1115-1128
The mammalian cell nucleus is functionally compartmentalized into various substructures. Nuclear speckles, also known as interchromatin granule clusters, are enriched with SR splicing factors and are implicated in gene expression. Here we report that nuclear speckle formation is developmentally regulated; in certain cases phosphorylated SR proteins are absent from the nucleus and are instead localized at granular structures in the cytoplasm. To investigate how the nuclear architecture is formed, we performed a phenotypic screen of HeLa cells treated with a series of small interfering RNAs. Depletion of Ran-binding protein 2 induced cytoplasmic intermediates of nuclear speckles in G1 phase. Detailed analyses of these structures suggested that a late step in the sequential nuclear entry of mitotic interchromatin granule components was disrupted and that phosphorylated SR proteins were sequestered in an SR protein kinase-dependent manner. As a result, the cells had an imbalanced subcellular distribution of phosphorylated and hypophosphorylated SR proteins, which affected alternative splicing patterns. This study demonstrates that the speckled distribution of phosphorylated pre-mRNA processing factors is regulated by the nucleocytoplasmic transport system in mammalian cells and that it is important for alternative splicing. 相似文献
19.
Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species. 相似文献
20.
Savaldi-Goldstein S Sessa G Fluhr R 《The Plant journal : for cell and molecular biology》2000,21(1):91-96
The tobacco PK12 is induced by the plant hormone ethylene and is a member of the LAMMER family of protein kinases. Members of this family contain in their C-terminus a unique 'EHLAMMERI/VLGPLP' motif of unknown function, and are related to cyclin- and mitogen-activated protein (MAP)-dependent kinases. The animal members of this class play a role in differentiation. They phosphorylate and physically interact with serine/arginine-rich (SR) splicing factors in vivo to alter their activity and the splicing of target mRNAs. SR proteins have been recently described in plants. The capability of PK12 LAMMER kinase to bind and phosphorylate SR proteins was tested in vitro by kinase and binding assays. The tobacco PK12 phosphorylated both animal and plant SR proteins and specifically interacted with the plant splicing factor atSRp34/SR1. In addition, by site-directed mutagenesis, the LAMMER motif was found to be required for PK12 kinase activity but was not necessary for substrate binding. Consistent with a role in phosphorylation of splicing factors, PK12 was found to localize to the nucleus when transiently over-expressed in suspension cells. 相似文献