首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using an in vitro microsuperfusion procedure, the NMDA-evoked release of [3H]ACh was studied after suppression of dopamine (DA) transmission (alpha-methyl-p-tyrosine) in striatal compartments of the rat. The effects of tachykinin neurokinin 1 (NK1) receptor antagonists and the ability of appropriate agonists to counteract the antagonist responses were investigated to determine whether tachykinin NK1 classic, septide-sensitive and/or new NK1-sensitive receptors mediate these regulations. The NK1 antagonists, SR140333, SSR240600, GR205171 but not GR82334 and RP67580 (0.1 and 1 microM) markedly reduced the NMDA (1 mm + D-serine 10 microM)-evoked release of [3H]ACh only in the matrix. These responses unchanged by coapplication with NMDA of NK2 or NK3 agonists, [Lys5,MeLeu9,Nle10]NKA(4-10) or senktide, respectively, were completely counteracted by the selective NK1 agonist, [Pro9]substance P but also by neurokinin A and neuropeptide K (1 nM each). According to the rank order of potency of agonists for counteracting the antagonist responses ([Pro9]substance P, 0.013 nM > neurokinin A, 0.15 nM > substance P(6-11) 7.7 nM = septide 8.7 nM), the new NK1-sensitive receptors mediate the facilitation by endogenous tachykinins of the NMDA-evoked release of ACh in the matrix, after suppression of DA transmission. Solely the NK1 antagonists having a high affinity for these receptors could be used as indirect anti-cholinergic agents.  相似文献   

2.
The neurokinin 3 receptor (NK3R) is colocalized with vasopressinergic neurons within the hypothalamic paraventricular nucleus (PVN) and intraventricular injections of NK3R agonists stimulate vasopressin (VP) release. Our objectives were to test the hypotheses that intraventricular injections of the selective NK3R agonist, succinyl-[Asp6, N-Me-Phe8] substance P (senktide), activate NK3R expressed by vasopressinergic neurons within the PVN, and see whether NK3R expressed by vasopressinergic neurons in the PVN are activated by hyperosmolarity. NK3R internalization was used as a marker of receptor activation. Immunohistochemistry revealed that NK3Rs were membrane-bound on VP immunoreactive neurons in control rats. Following senktide injection, there was a significant increase in the appearance of NK3R immunoreactivity within the cytoplasm and a morphological rearrangement of the dendrites, indicating receptor internalization, which was reversible. Furthermore, pretreatment with a selective NK3R antagonist, SB-222200, blocked the senktide-induced VP release and internalization of the NK3R in the PVN. These results show that the trafficking of the NK3R is due to ligand binding the NK3R. In a subsequent experiment, rats were administered intragastric loads of 2 or 0.15 M NaCl, and NK3R immunohistochemistry was used to track activation of the receptor. In contrast to control rats, 2 M NaCl significantly increased plasma VP levels and caused the internalization of the NK3R on VP neurons. Also, NK3R immunoreactivity was located in the nuclei of vasopressinergic neurons after senktide and 2 M NaCl treatment. These results show that hyperosmolarity stimulates the local release of an endogenous ligand in the PVN to bind to and activate NK3R on vasopressinergic neurons.  相似文献   

3.
To examine mechanisms underlying substance P (SP) release from primary sensory neurons in response to activation of the non-selective cation channel transient receptor potential ankyrin 1 (TRPA1), SP release from cultured rat dorsal root ganglion neurons was measured, using radioimmunoassay, by stimulating TRPA1 with allyl isothiocyanate (AITC), a TRPA1 agonist. AITC-evoked SP release occurred in a concentration- and time-dependent manner. Interestingly, p38 mitogen-activated protein kinase (p38) inhibitor SB203580 significantly attenuated AITC-evoked SP release. The in vivo effect of AITC-evoked SP release from primary sensory neurons in mice was evaluated. Hind paw intraplantar injection of AITC induced nociceptive behaviors and inflammation (edema, thermal hyperalgesia). AITC-induced thermal hyperalgesia and edema were inhibited by intraplantar pre-treatment with either SB203580 or neurokinin-1 receptor antagonist CP96345. Moreover, intrathecal pre-treatment with either CP96345 or SB203580 inhibited AITC-induced nociceptive behaviors and thermal hyperalgesia. Immunohistochemical studies demonstrated that intraplantar AITC injection induced the phosphorylation of p38 in mouse dorsal root ganglion neurons containing SP. These findings suggest that activation of TRPA1 evokes SP release from the primary sensory neurons through phosphorylation of p38, subsequent nociceptive behaviors and inflammatory responses. Furthermore, the data also indicate that blocking the effects of TRPA1 activation at the periphery leads to significant antinociception.  相似文献   

4.
The present study evaluated whether nuclear factor-kappaB (NF-kappaB) activation contributes to the apoptotic-like death of striatal neurons induced by kainic acid (KA) receptor stimulation. Intrastriatally infused KA (1.25-5.0 nmol) produced substantial neuronal loss as indicated by an 8-73% decrease in 67-kDa glutamic acid decarboxylase (p<0.05). KA (1.25-5.0 nmol) elicited internucleosomal DNA fragmentation that was inhibited by the AMPA/KA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dibenzo[f]quinoxaline-7-sulfonamide) but not by the NMDA receptor antagonist MK-801. A decrease in IkappaB-alpha protein levels, which was accompanied by an increase in NF-kappaB binding activity, was found from 6 to 72 h after KA (2.5 nmol) infusion. NF-kappaB was composed mainly of p65 and c-Rel as revealed by supershift assay. In addition, c-Myc and p53 increased from five- to sevenfold from 24 to 72 h after KA (2.5 nmol) administration. Immunohistochemistry revealed high levels of c-Myc and p53 immunoreactivity, mainly in medium-sized striatal neurons. Pretreatment with the cell-permeable recombinant peptide NF-kappaB SN50 (5-20 microg) blocked NF-kappaB nuclear translocation, but had no effect on AP-1 binding. NF-kappaB SN50 also inhibited the KA-induced up-regulation of c-Myc and p53, as well as internucleosomal DNA fragmentation. The apoptotic-like destruction of rat striatal neurons induced by KA receptor stimulation thus appears to involve biochemical mechanisms similar to those mediating the excitotoxic response to NMDA receptor stimulation. The present results provide additional support for the view that NF-kappaB activation contributes to c-Myc and p53 induction and subsequent apoptosis in an excitotoxic model of Huntington's disease.  相似文献   

5.
(2-[(125)I]iodohistidyl(1))Neurokinin A ([(125)I]NKA), which labels "septide-sensitive" but not classic NK(1) binding sites in peripheral tissues, was used to determine whether septide-sensitive binding sites are also present in the rat brain. Binding studies were performed in the presence of SR 48968 (NK(2) antagonist) and senktide (NK(3) agonist) because [(125)I]NKA also labels peripheral NK(2) binding sites and, as shown in this study, central NK(3) binding sites. [(125)I]NKA was found to label not only septide-sensitive binding sites but also a new subtype of NK(1) binding site distinct from classic NK(1) binding sites. Both subtypes of [(125)I]NKA binding sites were sensitive to tachykinin NK(1) antagonists and agonists but also to the endogenous tachykinins NKA, neuropeptide K (NPK), and neuropeptide gamma (NPgamma). However, compounds of the septide family such as substance P(6-11) [SP(6-11)] and propionyl-[Met(O(2))(11)]SP(7-11) and some NK(1) antagonists, GR 82334, RP 67580, and CP 96345, had a much lower affinity for the new NK(1)-sensitive sites than for the septide-sensitive sites. The hypothalamus and colliculi possess only this new subtype of NK(1) site, whereas both types of [(125)I]NKA binding sites were found in the amygdala and some other brain structures. These results not only explain the central effects of septide or SP(6-11), but also those of NKA, NPK, and NPgamma, which can be selectively blocked by NK(1) receptor antagonists.  相似文献   

6.
Abstract: The regulation of striatal cholinergic function by tachykinins was examined in urethane-anesthetized rats by using microdialysis. Substance P (0.01–1 µ M ), [Sar9,Met(O2)11]substance P (1–10 µ M ), septide (0.1–3 µ M ), neurokinin (NK) A (0.1–10 µ M ), and senktide (0.1–10 µ M ) produced concentration-dependent increases in striatal acetylcholine (ACh) release. Septide was the most potent agonist for inducing release of ACh, whereas the stimulating effect of senktide was less pronounced and more progressive in onset. The response to septide was prevented by intraperitoneal administration of the nonpeptide NK1 antagonist SR 140333 (1–3 mg/kg) but not by the nonpeptide NK2 receptor antagonist SR 48968, indicating that the effect was mediated specifically by NK1 receptors. ACh release caused by NKA was reduced by SR 48968 (1–3 mg/kg) and slightly affected by SR 140333, indicating a principal role for NK2 receptors in the peptide response. The similar efficacy of SR 140333 and SR 48968 in blocking substance P-induced ACh release suggested that the effect of this peptide involves the stimulation of both NK1 and NK2 receptors. Finally, our results indicate that the increase in striatal ACh release induced by the D1 agonist (+)-SKF-38393 (3 µ M ) may be mediated indirectly through local release of NKA or substance P acting at NK2 receptors.  相似文献   

7.
Members of the tachykinin family have trophic effects on developing neurons. The tachykinin neurokinin 3 receptor (NK3R) appears early in embryonic development; during the peak birthdates of hypothalamic neurons, but its involvement in neural development has not been examined. To address its possible role, immortalized embryonic hypothalamic neurons (CLU209) were treated with CellMask, a plasma membrane stain, or the membranes were imaged in CLU209 cells that were transfected with a pEGFP‐NK3R expression vector. Nontransfected cells and transfected cells were then treated with senktide, a NK3R agonist, or Dulbecco's Modified Eagle's Medium (DMEM) and time‐lapse confocal images were captured for the following 30 min. Compared to DMEM, senktide treatment led to filopodia initiation from the soma of both nontransfected and transfected CLU209 cells. These filopodia had diameters and lengths of approximately 200 nm and 3 µm, respectively. Pretreatment with an IP3 receptor blocker, 2‐aminoethoxydiphenyl borate (2‐APB), prevented the senktide‐induced growth in filopodia; demonstrating that NK3R‐induced outgrowth of filopodia likely involves the release of intracellular calcium. Exposure of transfected CLU209 cells to senktide for 24 h led to further growth of filopodia and processes that extended 10–20 µm. A mathematical model, composed of a linear and population model was developed to account for the dynamics of filopodia growth during a timescale of minutes. The results suggest that the ligand‐induced activation of NK3R affects early developmental processes by initiating filopodia formation that are a prerequisite for neuritogenesis. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 12–22, 2015  相似文献   

8.
Neurokinin-containing nerve fibers were localized to guinea pig airway parasympathetic ganglia in control tissues but not in tissues pretreated with capsaicin. The purpose of the present study was to determine whether neurokinins, released during axonal reflexes or after antidromic afferent nerve stimulation, modulate ganglionic synaptic neurotransmission. The neurokinin type 3 (NK(3)) receptor antagonists SB-223412 and SR-142801 inhibited vagally mediated cholinergic contractions of bronchi in vitro at stimulation voltages threshold for preganglionic nerve activation but had no effect on vagally mediated contractions evoked at optimal voltage or field stimulation-induced contractions. Intracellular recordings from the ganglia neurons revealed that capsaicin-sensitive nerve stimulation potentiated subsequent preganglionic nerve-evoked fast excitatory postsynaptic potentials. This effect was mimicked by the NK(3) receptor agonist senktide analog and blocked by SB-223412. In situ, senktide analog markedly increased baseline tracheal cholinergic tone, an effect that was reversed by atropine and prevented by vagotomy or SB-223412. Comparable effects of intravenous senktide analog on pulmonary insufflation pressure were observed. These data highlight the important integrative role played by parasympathetic ganglia and indicate that activation of NK(3) receptors in airway ganglia by endogenous neurokinins facilitates synaptic neurotransmission.  相似文献   

9.
非NMDA受体参与双相呼气和吸气神经元电活动的调节   总被引:1,自引:1,他引:0  
Pan BX  Wu ZH 《生理学报》2001,53(2):89-92
在新生大鼠延髓脑片上同步记录舌下神经根和双相呼气神经元/吸气神经元单位的放电活动,并在灌流的改良Kredbs液中先后加以非NMDA受体的激动剂KA和拮抗剂DNQX,观察对神经元单位放电的影响,以进一步探讨非NMDA受体在对双相呼气神经元之间交互兴奋和吸气神经元兴奋性突触输入中的作用,结果表明,使用非NMDA受体激动剂KA以后,双相呼气神经元的放电频率和蜂频率都明显增大,吸气神经元中期放电的频率和非NMDA受体激动剂KA以后,双相呼气神经元的放电频率和峰频率都明显增大,吸气神经元中期放电的频率和峰频率也显著增大,而早期和晚期放电的频率无明显改变,用相应拮抗剂以后,上述效应明显被抑制,结果提示,非NMDA受体参与了双相呼气神经元之间的交互兴奋作用,并且也介导了吸气神经元的兴奋性突触输入/  相似文献   

10.
OBJECTIVES: Tachykinins are important mediators in neuromuscular signalling but have not been thoroughly characterised in the mouse gut. We investigated the participation of tachykinin receptors in contractility of circular muscle strips of the mouse ileum. RESULTS: Electrical field stimulation (EFS) of excitatory nonadrenergic noncholinergic (NANC) nerves induced frequency-dependent contractions which were mimicked by substance P (SP). Desensitisation of SP and NK(1), NK(2) or NK(3) receptors significantly reduced contractions to EFS. The NK(1) receptor blocker RP67580 significantly inhibited NANC contractions to EFS. The NK(2) and NK(3) receptor blockers nepadutant and SR142801 did not affect NANC contractions per se but increased the RP67580-induced inhibition of NANC contractions to EFS. Contractions to SP were significantly reduced by RP67580 but not affected by nepadutant or SR142801. The NK(1) and NK(2) receptor agonists, septide and [beta-ala(8)]-NKA 4-10 (beta-A-NKA), respectively, but not the NK(3) receptor agonist senktide-induced dose-dependent contractions. Atropine inhibited and l-NNA augmented contractions to septide. Contractions to beta-A-NKA were insensitive to atropine but augmented by l-NNA. CONCLUSIONS: Tachykinins mediate NANC contractions to EFS in the mouse small intestine. Endogenously released tachykinins activate mainly NK(1) receptors, located on cholinergic nerves and smooth muscle cells and, to a lesser degree, NK(2) and NK(3) receptors, most likely located presynaptically.  相似文献   

11.
Neurokinin B (NKB) and its cognate receptor neurokinin 3 (NK3R) play a critical role in reproduction. NKB and NK3R are coexpressed with dynorphin (Dyn) and kisspeptin (Kiss1) genes in neurons of the arcuate nucleus (Arc). However, the mechanisms of action of NKB as a cotransmitter with kisspeptin and dynorphin remain poorly understood. We explored the role of NKB in the control of LH secretion in the female rat as follows. 1) We examined the effect of an NKB agonist (senktide, 600 pmol, administered into the lateral cerebral ventricle) on luteinizing hormone (LH) secretion. In the presence of physiological levels of estradiol (E(2)), senktide induced a profound increase in serum levels of LH and a 10-fold increase in the number of Kiss1 neurons expressing c-fos in the Arc (P < 0.01 for both). 2) We mapped the distribution of NKB and NK3R mRNAs in the central forebrain and found that both are widely expressed, with intense expression in several hypothalamic nuclei that control reproduction, including the Arc. 3) We studied the effect of E(2) on the expression of NKB and NK3R mRNAs in the Arc and found that E(2) inhibits the expression of both genes (P < 0.01) and that the expression of NKB and NK3R reaches its nadir on the afternoon of proestrus (when circulating levels of E(2) are high). These observations suggest that NKB/NK3R signaling in Kiss1/NKB/Dyn-producing neurons in the Arc has a pivotal role in the control of gonadotropin-releasing hormone (GnRH)/LH secretion and its regulation by E(2)-dependent negative feedback in the rat.  相似文献   

12.
The tachykinins, including substance P, neurokinin A and neurokinin B, are a mammalian peptide family that have documented motor, sensory and circulatory neurotransmitter functions in the gut. Little is known about their action on the exocrine pancreas. In this study we investigated the effects of PG-KII, a natural NK3-tachykinin receptor agonist, and senktide, a synthetic NK3-tachykinin receptor agonist, on amylase release from isolated pancreatic lobules of the guinea pig in comparison with the secretagogues carbachol, caerulein and substance P and the depolarizing agent KCl. When added to incubation flasks at various concentrations (from 10(-10) to 10(-6)M), PG-KII and senktide both caused a dose-dependent increase in amylase release from pancreatic lobules. PG-KII and senktide elicited a lower maximal response (7.5+/-0.8 and 8.1+/-0.6% of the total lobular amylase content) than carbachol (34.4+/-3.9%), caerulein (26.5+/-2.8%) and KCl (22.5+/-3.8%). Whereas atropine left PG-KII and senktide-stimulated secretion unaffected, the non peptide NK3 receptor antagonist SR 142801 significantly reduced the stimulant effect of PG-KII and senktide. PG-KII (10(-7)M) also slightly though significantly increased the response to lower concentrations of caerulein (10(-11) and 10(-10)M) and carbachol (10(-7) and 10(-6)M). These findings show that PG-KII and senktide are weak stimulants of exocrine pancreatic secretion that act directly on the acinar cells through NK3 receptors, without cholinergic involvement. We suggest also that the tachykininergic NK3 receptor system cooperates with the other known secretagogues in the control of pancreatic exocrine secretion.  相似文献   

13.
In this study the localizations of tachykinin neurokinin-1 (NK1) and neurokinin-3 (NK3) receptors in the guinea-pig brain are described. In agreement with studies in rat and human brain, the neurons that exhibited the most marked NK1 receptor immunoreactivity were found in the dorsomedial caudate putamen. NK1 receptors were also widely distributed in diencephalic structures and in the mid and hind brain. NK3 receptors were distributed in both superficial and deep layers of the cortex and many appeared to be located on cells with astrocyte-like morphology in the glia limitans. In several regions including the thalamus, hypothalamus, amygdala, periaqueductal gray, substantia nigra and area postrema, both NK1 and NK3 immunoreactivity were found. The present study revealed that tachykinin receptors are widely distributed in the guinea-pig central nervous system.  相似文献   

14.
The receptors for neurokinin 1 (NK1-R), neurokinin 2 (NK2-R), and neurokinin 3 (NK3-R) are expressed and functionally active in the uterus, promoting strong contractions of the myometrium. Previously, we demonstrated that myometrial contractility activated by the NK-Rs is regulated by estrogen. In the current study, we furthered our investigations of the role of estrogen in the regulation of NK3-R-mediated myometrial contractility. Estrogen promotes both heterologous and homologous desensitization of NK3-R-mediated uterine contractility. In tissue obtained from estrogen-dominated rats (ovariectomized estrogen-treated rats and rats in estrus), the magnitude of uterine contractions decreased in response to consecutive additions of the NK3-R-selective agonist senktide. By addition of the fourth dose of agonist, the contractile response was routinely barely above baseline. In contrast, in tissue obtained from non-estrogen-dominated rats consecutive doses of senktide resulted in contractions of identical magnitude. The homologous desensitization was specific to the NK3-R, and the desensitization of the NK3-R-mediated response did not affect the magnitude or nature of uterine contractions in response to NK1-R or NK2-R activation. Furthermore, heterologous and homologous desensitization of NK3-R-mediated contractility is dependent upon the duration of exposure to estrogen. This complex mechanism appears to be important in intact tissue; capsaicin-mediated release of endogenous neuropeptides resulted in a desensitization of response to subsequent stimulation with senktide in estrogen-dominated uterine tissue.  相似文献   

15.
The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, acetylation, and gene expression, using qRT-PCR, in a hypothalamic cell line (CLU 209) that expresses the NK3R. Senktide (1 nM, 10 nM) caused a relaxation of chromatin, an increase in global acetylation of histone H3 and H4, and an increase in the expression of a common set of genes involved in cell signaling, cell growth, and synaptic plasticity. Pretreatment with histone acetyltransferase (HAT) inhibitor (garcinol and 2-methylene y-butylactone), that inhibits p300, p300/CREB binding protein (CBP) associated factor (PCAF), and GCN 5, prevented the senktide-induced increase in expression of most, but not all, of the genes upregulated in response to 1 nM and 10 nM senktide. Treatment with 100 nM had the opposite effect: a reduction in chromatin relaxation and decreased acetylation. The expression of four genes was significantly decreased and the HAT inhibitor had a limited effect in blocking the upregulation of genes in response to 100 nM senktide. Activation of the NK3R appears to recruit multiple pathways, including acetylation, and possibly histone deactylases, histone methylases, or DNA methylases to affect chromatin structure and gene expression.  相似文献   

16.
Programmed cell death (pcd) may take the form of apoptosis or of nonapoptotic pcd. Whereas cysteine aspartyl-specific proteases (caspases) mediate apoptosis, the mediators of nonapoptotic cell death programs are much less well characterized. Here we report that alternative, nonapoptotic pcd induced by the neurokinin-1 receptor (NK(1)R) activated by its ligand Substance P, is mediated by a MAPK phosphorylation cascade recruited by the scaffold protein arrestin 2. The activation of the protein kinases Raf-1, MEK2, and ERK2 is essential for this form of nonapoptotic pcd, leading to the phosphorylation of the orphan nuclear receptor Nur77. NK(1)R-mediated cell death was inhibited by a dominant negative form of arrestin 2, Raf-1, or Nur77, by MEK1/2-specific inhibitors, and by RNA interference directed against ERK2 or MEK2 but not ERK1 or MEK1 and against Nur77. The MAPK pathway is also activated in neurons in primary culture undergoing NK(1)R-mediated death, since the MEK inhibitor PD98059 inhibited Substance P-induced death in primary striatal neurons. These results suggest that Nur77, which is regulated by a MAPK pathway activated via arrestin 2, modulates NK(1)R-mediated nonapoptotic pcd.  相似文献   

17.
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+-containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved.  相似文献   

18.
19.
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.  相似文献   

20.
Neurokinin B (NKB) is a potential regulator of pulsatile gonadotropin-releasing hormone (GnRH) secretion via activation of the neurokinin-3 receptor (NK3R). NKB with the consensus sequence of the tachykinin peptide family also binds to other tachykinin receptors [neurokinin-1 receptor (NK1R) and neurokinin-2 receptor (NK2R)] with low selectivity. In order to identify the structural requirements for the development of novel potent and selective NK3R agonists, a structure–activity relationship (SAR) study of [MePhe7]-NKB and other naturally occurring tachykinin peptides was performed. The substitutions to naturally occurring tachykinins with Asp and MePhe improved the receptor binding and agonistic activity for NK3R. The corresponding substitutions to NKB provided an NK3R selective analog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号