首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulphur fractionation and availability to plants are poorly understood in calcareous soils. Sixty-four calcareous soils containing varying amounts of CaCO3 were collected from ten provinces in China and their S fractions determined. Organic S was the predominant fraction of S, accounting for on average 77% of the soil total S. The amounts of adsorbed sulphate were found to be negligible. 1 M HCl extracted substantially more sulphate than either 0.01 M CaCl2 or 0.016 M KH2PO4, indicating the existence of water-insoluble but acid-soluble sulphate, probably in the form of sulphate co-precipitated with CaCO3. The concentrations of water-insoluble sulphate correlated positively with the contents of CaCO3 and accounted for 0.03–40.3% (mean 11.7%) of soil total S. To test the bioavailability of water-insoluble sulphate, a sulphate-CaCO3 co-precipitate labelled with 35S was prepared and added to a calcareous soil in a pot experiment with either NH4+ or NO3 as the N source. In 29 days, wheat plants took up 10.6% and 3.0% of the 35S added to the soil in the NH4+ and NO3 treatments, respectively. At the end of the pot experiment, the decrease of water-insoluble, acid-soluble, sulphate was more apparent in the NH4+ than in the NO3 treatment. The results indicate that sulphate co-precipitated with CaCO3 in calcareous soils may become partly available for plant uptake, depending on rhizosphere pH, if the field precipitate is similar to the laboratory prepared sample studied.  相似文献   

2.
Lupins, canola, ryegrass and wheat fertilized with Na2 35SO4 and either 15NH4Cl or K15NO3(N:S=10:1), were grown in the field in unconfined microplots, and the sources of N and S (fertilizer, soil, atmosphere, seed) in plant tops during crop development were estimated. Modelled estimates of the proportion of lupin N derived from the atmosphere, which were obtained independently of reference plants, were used to calculate the proportion of lupin N derived from the soil. Total uptake of N and S and uptake of labelled N and S increased during crop development. Total uptake of S by canola was higher than lupins, but labelled S uptake by lupins exceeded uptake by canola. The form of N applied had no effect on uptake of labelled and unlabelled forms of N or S. Ratios of labelled to unlabelled S and ratios of labelled to unlabelled N derived from soil sources decreased during growth, and were less for S than for N for each crop at each sampling time. Although ratios of labelled to unlabelled soil-derived N were similar between crops at 155, 176 and 190 days after sowing, ratios of labelled to unlabelled S for lupins were higher than for the reference crops and declined during this period. The ratios of labelled to unlabelled S in lupins and the reference plants therefore bore no relationship either to ratios of labelled to unlabelled soil-derived N in the plants, or to total S uptake by the plants. Therefore the hypothesis that equal ratios of labelled N to unlabelled soil-derived N in legumes (Rleg) and reference plants (Rref) would be indicated by equal ratios of labelled to unlabelled S was not supported by the data. The results therefore show that the accuracy of reference plant-derived values of Rleg cannot be evaluated by labelling with 35S.  相似文献   

3.
Sulfur cycling was investigated in carbonate-rich and iron-poor sediments vegetated with Posidonia oceanica in oligotrophic Mediterranean around Mallorca Island, Spain, to quantify sulfate reduction and pools of sulfide in seagrass sediments. The oxygen penetration depth was low (< 4.5 mm) and sulfate reduction rates were relatively high (0.7–12 mmol m–2d–1). The total pools of reduced sulfides were remarkably low (< 5 mol S m–2) indicating a fast turnover of reduced sulfides in these iron-poor sediments. The sulfate reduction rates were generally higher in vegetated compared to bare sediments possible due to enhanced sedimentation of sestonic material inside the seagrass meadows. The sulfate reduction rates were positively correlated with the seasonal variation in water temperature and negatively correlated with the shoot density indicating that the microbial activity was controlled by temperature and release of oxygen from the roots. The pools of reduced sulfides were low in these iron-poor sediments leading to high oxygen consumption for reoxidation. The sediments were highly anoxic as shown by relatively low oxygen penetration depths (< 4.5 mm) in these low organic sediments. The net shoot recruitment rate was negative in sediments enriched with organic matter, suggesting that organic matter enrichment may be an important factor for seagrass status in these iron-depleted carbonate sediments.  相似文献   

4.
We examined the effects of growth carbon dioxide (CO2)concentration and soil nutrient availability on nitrogen (N)transformations and N trace gas fluxes in California grasslandmicrocosms during early-season wet-up, a time when rates of Ntransformation and N trace gas flux are high. After plant senescenceand summer drought, we simulated the first fall rains and examined Ncycling. Growth at elevated CO2 increased root productionand root carbon:nitrogen ratio. Under nutrient enrichment, elevatedCO2 increased microbial N immobilization during wet-up,leading to a 43% reduction in gross nitrification anda 55% reduction in NO emission from soil. ElevatedCO2 increased microbial N immobilization at ambientnutrients, but did not alter nitrification or NO emission. ElevatedCO2 did not alter soil emission of N2O ateither nutrient level. Addition of NPK fertilizer (1:1:1) stimulatedN mineralization and nitrification, leading to increased N2Oand NO emission from soil. The results of our study support a mechanisticmodel in which elevated CO2 alters soil N cycling and NOemission: increased root production and increased C:N ratio in elevatedCO2 stimulate N immobilization, thereby decreasingnitrification and associated NO emission when nutrients are abundant.This model is consistent with our basic understanding of how C availabilityinfluences soil N cycling and thus may apply to many terrestrial ecosystems.  相似文献   

5.
Three protocols for the determination of inorganic and organic sulfur fractions were tested for their suitability to estimate total indigenous organic sulfur (Sorg) and35Sorg formed from added35SO4 2– in sediments of chemically dilute lakes in the ELA. The protocols tested have all been reported in the literature. It was found that two protocols involving sequential analyses for S fractions following acid treatment gave estimates of both Sorg and35Sorg up to 87% lower than a non-sequential protocol. The low estimates were largely due to hydrolysis and solubilization of solid phase S which was then removed in a rinsing step. The non-sequential protocol, in which total reduced inorganic sulfur and total sulfur were determined on separate aliquots, is recommended as the most reliable of the three. Individual analyses in this protocol were verified for these lake sediments using a variety of S standards.  相似文献   

6.
Saetre P  Stark JM 《Oecologia》2005,142(2):247-260
Sporadic summer rainfall in semi-arid ecosystems can provide enough soil moisture to drastically increase CO2 efflux and rates of soil N cycling. The magnitudes of C and N pulses are highly variable, however, and the factors regulating these pulses are poorly understood. We examined changes in soil respiration, bacterial, fungal and microfaunal populations, and gross rates of N mineralization, nitrification, and NH4+ and NO3 immobilization during the 10 days following wetting of dry soils collected from stands of big sagebrush (Artemisia tridentata) and cheatgrass (Bromus tectorum) in central Utah. Soil CO2 production increased more than tenfold during the 17 h immediately following wetting. The labile organic C pool released by wetting was almost completely respired within 2–3 days, and was nearly three times as large in sagebrush soil as in cheatgrass. In spite of larger labile C pools beneath sagebrush, microbial and microfaunal populations were nearly equal in the two soils. Bacterial and fungal growth coincided with depletion of labile C, and populations peaked in both soils 2 days after wetting. Protozoan populations, whose biomass was nearly 3,000-fold lower than bacteria and fungi, peaked after 2–4 days. Gross N mineralization and nitrification rates were both faster in cheatgrass soil than in sagebrush, and caused greater nitrate accumulation in cheatgrass soil. Grazing of bacteria and fungi by protozoans and nematodes could explain neither temporal trends in N mineralization rates nor differences between soil types. However, a mass balance model indicated that the initial N pulse was associated with degradation of microbial substrates that were rich in N (C:N <8.3), and that microbes had shifted to substrates with lower N contents (C:N =15–25) by day 7 of the incubation. The model also suggested that the labile organic matter in cheatgrass soil had a lower C:N ratio than in sagebrush, and this promoted faster N cycling rates and greater N availability. This study provides evidence that the high N availability often associated with wetting of cheatgrass soils is a result of cheatgrass supplying substrates to microbes that are of high decomposability and N content.  相似文献   

7.
Summary The influence of total nitrification to nitrate or partial nitrification to nitrite on the soil organic nitrogen status was examined. NH 4 +15N was added to the soil in the absence and the presence of NaClO3, respectively nitrapyrin. The first chemical inhibits only nitrate formation, the second inhibits total nitrification. The accumulation of nitrite nitrogen in the soil at levels up to 5 mg kg–1 increased the loss of nitrogen. Yet, it did not increase the binding of mineral nitrogen into soil organic matter, relative to the control soil. The data suggest that the biochemistry of the nitrite formation process, rather than the levels of nitrite ions formed, are of primary importance in the role of nitrification mediated nitrosation of soil organic matter.  相似文献   

8.
Chen  C. R.  Condron  L. M.  Sinaj  S.  Davis  M. R.  Sherlock  R. R.  Frossard  E. 《Plant and Soil》2003,256(1):115-130
Vegetative conversion from grass to forest may influence soil nutrient dynamics and availability. A short-term (40 weeks) glasshouse experiment was carried out to investigate the impacts of ryegrass (Lolium perenne) and radiata pine (Pinus radiata) on soil phosphorus (P) availability in 15 grassland soils collected across New Zealand using 33P isotopic exchange kinetics (IEK) and chemical extraction methods. Results from this study showed that radiata pine took up more P (4.5–33.5 mg P pot–1) than ryegrass (1.1–15.6 mg pot–1) from the soil except in the Temuka soil in which the level of available P (e.g., E 1min Pi, bicarbonate extractable Pi) was very high. Radiata pine tended to be better able to access different forms of soil P, compared with ryegrass. There were no significant differences in the level of water soluble P (Cp, intensity factor) between soils under ryegrass and radiata pine, but the levels of Cp were generally lower compared with original soils due to plant uptake. The growth of both ryegrass and radiata pine resulted in the redistribution of soil P from the slowly exchangeable Pi pool (E > 10m Pi, reduced by 31.8% on the average) to the rapidly exchangeable Pi (E 1min-1d Pi, E 1d-10m Pi) pools in most soils. The values of R/r 1 (the capacity factor) were also generally greater in most soils under radiata pine compared with ryegrass. Specific P mineralisation rates were significantly greater for soils under radiata pine (8.4–21.9%) compared with ryegrass (0.5–10.8%), indicating that the growth of radiata pine enhanced mineralisation of soil organic P. This may partly be ascribed to greater root phosphatase activity for radiata pine than for ryegrass. Plant species × soil type interactions for most soil variables measured indicate that the impacts of plant species on soil P dynamics was strongly influenced by soil properties.  相似文献   

9.
Sulfate microbial immobilization and the mineralization of organic S were measured in vitro in soil horizons (LFH, Ae, Bhf, Bf and C) of the Lake Laflamme watershed (47°17 N, 71°14 O) using 35SO4. LFH samples immobilized from 23 to 77% of the added 35SO4 within 2 to 11 days. The 35SO4 microbial immobilization increased with temperature and reached an asymptote after a few days. The mineral soil generally immobilized less than 20% of the added 35SO4, and an asymptote was reached after 2 days. An isotopic equilibrium was rapidly reached in mineral horizons. A two-compartment (SO4 and organic S) model adequately described 35SO4 microbial immobilization kinetics. The active organic reservoir in the whole soil profile represented less than 1% of the total organic S. The average concentrations of dissolved organic S (DOS) in the soil solutions leaving the LFH, Bhf and Bf horizons were respectively 334, 282 and 143 µgL–1. Assuming that the DOS decrease with soil depth corresponded to the quantities adsorbed in the B horizons, we estimated that 12 800 kgha–1 of organic S could have been formed since the last glaciation, which is about 13 times the size of the actual B horizons reservoirs. Our results suggest that the organic S reservoirs present in mineral forest soils are mostly formed by the DOS adsorption resulting from incomplete litter decomposition in the humus layer. The capability of these horizons to immobilize SO4 from the soil solution would be restricted to a 1% active fraction composed of microorganisms. Despite their refractory nature, these reservoirs can, however, be slowly decomposed by microorganisms and contribute to the S-SO4 export from the watershed in the long term.  相似文献   

10.
11.
Nonesterified long-chain fatty acids (myristic, palmitic, oleic and arachidonic), added at low amounts (around 20 nmol/mg protein) to rat liver mitochondria, energized by respiratory substrates and suspended in isotonic solutions of KCl, NaCl, RbCl or CsCl, adjusted to pH 8.0, induce a large-scale swelling followed by a spontaneous contraction. Such swelling does not occur in alkaline solutions of choline chloride or potassium gluconate or sucrose. These changes in the matrix volume reflect a net uptake, followed by net extrusion, of KCl (or another alkali metal chloride) and are characterized by the following features: (1) Lowering of medium pH from 8.0 to 7.2 results in a disappearance of the swelling-contraction reaction. (2) The contraction phase disappears when the respiration is blocked by antimycin A. (3) Quinine, an inhibitor of the K+/H+ antiporter, does not affect swelling but suppresses the contraction phase. (4) The swelling phase is accompanied by a decrease of the transmembrane potential and an increase of respiration, whereas the contraction is followed by an increase of the membrane potential and a decrease of oxygen uptake. (5) Nigericin, a catalyst of the K+/H+ exchange, prevents or partly reverses the swelling and partly restores the depressed membrane potential. These results indicate that long-chain fatty acids activate in liver mitochondria suspended in alkaline saline media the uniporter of monovalent alkali metal cations, the K+/H+ antiporter and the inner membrane anion channel. These effects are presumably related to depletion of mitochondrial Mg2+, as reported previously [Arch. Biochem. Biophys. 403 (2002) 16], and are responsible for the energy-dissipating K+ cycling. The uniporter and the K+/H+ antiporter are in different ways activated by membrane stretching and/or unfolding, resulting in swelling followed by contraction.  相似文献   

12.
Fu  Shenglei  Cheng  Weixin 《Plant and Soil》2002,238(2):289-294
Using a natural abundance 13C method, soil organic matter (SOM) decomposition was studied in a C3 plant – `C4 soil' (C3 plant grown in a soil obtained from a grassland dominated by C4 grasses) system and a C4 plant – `C3 soil' (C4 plant grown in a soil taken from a pasture dominated by C3 grasses) system. In C3 plant – `C4 soil' system, cumulative soil-derived CO2–C were higher in the soils planted with soybean (5499 mg pot–1) and sunflower (4484 mg pot–1) than that in `C4 soil' control (3237 mg pot–1) without plants. In other words, the decomposition of SOM in soils planted with soybean and sunflower were 69.9% and 38.5% faster than `C4 soil' control. In C4 plant – `C3 soil' system, there was an overall negative priming effect of live roots on the decomposition of SOM. The cumulative soil-derived CO2–C were lower in the soils planted with sorghum (2308 mg pot–1) and amaranthus (2413 mg pot–1) than that in `C3 soil' control (2541 mg pot–1). The decomposition of SOM in soils planted with sorghum and amaranthus were 9.2% and 5.1% slower than `C3 soil' control. Our results also showed that rhizosphere priming effects on SOM decomposition were positive at all developmental stages in C3 plant – `C4 soil' system, but the direction of the rhizosphere priming effect changed at different developmental stages in the C4 plant – `C3 soil' system. Implications of rhizosphere priming effects on SOM decomposition were discussed.  相似文献   

13.
Macdonald  A.J.  Poulton  P.R.  Stockdale  E.A.  Powlson  D.S.  Jenkinson  D.S. 《Plant and Soil》2002,246(1):123-137
An earlier paper (Macdonald et al., 1997; J. Agric. Sci. (Cambridge) 129, 125) presented data from a series of field experiments in which 15N-labelled fertilizers were applied in spring to winter wheat, winter oilseed rape, potatoes, sugar beet and spring beans grown on four different soils in SE England. Part of this N was retained in the soil and some remained in crop residues on the soil surface when the crop was harvested. In all cases the majority of this labelled N remained in organic form. In the present paper we describe experiments designed to follow the fate of this `residual' 15N over the next 2 years (termed the first and second residual years) and measure its value to subsequent cereal crops. Averaging over all of the initial crops and soils, 6.3% of this `residual' 15N was taken up during the first residual year when the following crop was winter wheat and significantly less (5.5%) if it was spring barley. In the second year after the original application, a further 2.1% was recovered, this time by winter barley. Labelled N remaining after potatoes and sugar beet was more available to the first residual crop than that remaining after oilseed rape or winter wheat. By the second residual year, this difference had almost disappeared. The availability to subsequent crops of the labelled N remaining in or on the soil at harvest of the application year decreased in the order: silty clay loam>sandy loam>chalky loam>heavy clay. In most cases, only a small proportion of the residual fertilizer N available for plant uptake was recovered by the subsequent crop, indicating poor synchrony between the mineralization of 15N-labelled organic residues and crop N uptake. Averaging over all soils and crops, 22% of the labelled N applied as fertilizer was lost (i.e., unaccounted for in harvested crop and soil to a depth of 100 cm) by harvest in the year of application, rising to 34% at harvest of the first residual year and to 35% in the second residual year. In the first residual year, losses of labelled N were much greater after spring beans than after any of the other crops.  相似文献   

14.
Liang  B.C.  Gregorich  E.G.  MacKenzie  A.F. 《Plant and Soil》1999,208(2):227-232
Studies of soil organic matter equilibria must include estimates of C turnover. The objective of this study was to provide data on how the natural 13C abundance method can be used to determine the flow of C from C4 residues and soil organic matter (C3-source) in a short-term incubation. Corn residue was added at a rate of 5.7 mg C g−1 soil to two soils, a clay and a sandy clay loam. During the course of a 35-day incubation in a CO2-free system, CO2-C and 13C natural abundance of the respired CO2 were measured. About 20% of the corn residue-C added was mineralized in both soils as determined from the CO2 respired and the 13C natural abundance of the respired CO2. Mineralization of the added residues was also calculated as the difference of the total amount of the respired CO2-C between the control and the corn residue-treated soils divided by the total amount of corn residue-C. Values were 35% for the clay soil, and 30% for the sandy clay loam soil. The difference in values calculated from the 13 C natural abundance and the difference method was due to mineralization of the indigenous soil organic C resulting from the addition of corn residues. Use of the natural 13C abundance method could determine the degree of ‘priming effect’ in soils amended with C4-C residues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Soil nitrogen heterogeneity in a Dehesa ecosystem   总被引:1,自引:0,他引:1  
The C mineralization and N transformations during the decomposition of sunflower stalks (Helianthus annuus L.) and wheat straw (Triticum aestivum L.) with and without addition of (NH4)2SO4 (27.53 atom% 15N) were studied in a Vertisol. Soil samples were incubated under aerobic conditions for 224 days at 22 °C. The plant residues were added at a rate of 5.2 g kg-1 soil. Nitrogen was applied at a rate of 50.7 mg N kg-1 soil. Carbon dioxide emission and inorganic N content in soil were periodically determined. Gross N immobilization and remineralization were calculated on the basis of the isotopic dilution technique. At the end of the incubation period a 15N balance was established. Respectively, 68 and 45% of the applied residue-C mineralized from the sunflower stalks and wheat straw after 224 days. Both crop residues caused losses of up to 25% of added 15N after 224 days of incubation. These 15N losses were about three times larger than in the control soil, and were probably due to denitrification. The net immobilization of soil derived N following residue incorporation was largest in the case of wheat straw, depleting all soil inorganic N. In the wheat straw treatment with added (NH4)2SO4 soil inorganic N remained available, resulting in an enhanced initial C mineralization and N immobilization compared to the treatment without added N. In the case of the sunflower stalks, the high inorganic N content of the stalks suppressed the effects of N addition on C mineralization and N immobilization/mineralization. Gross N immobilization amounted to 31.9 and 28.2 mg N g-1 added C after 14 days for wheat straw and sunflower stalks, respectively. At the end of the incubation, about 35% of the newly immobilized N was remineralized in both plant residue treatments. Gross N immobilization plotted against decomposed C suggests that fairly uniform C-N relationships exist during the decomposition of divers C substrates. The results demonstrate that low fertilizer N use efficiencies may be expected in a wheat-sunflower cropping system with incorporation of crop residues, as the fertilizer N applied becomes largely immobilized in the soil organic fraction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A network of long-term monitoring sites on nitrogen (N) input and output of forests across Germany showed that a number of Germany's forests are subject to or are experiencing N saturation and that spruce (Picea abies) stands have high risk. Our study was aimed at (1) quantifying the changes in gross rates of microbial N cycling and retention processes in forest soils along an N enrichment gradient and (2) relating the changes in soil N dynamics to N losses. We selected spruce sites representing an N enrichment gradient (indicated by leaching : throughfall N ratios) ranging from 0.04–0.13 (low N),≤0.26 (intermediate N enrichment) to≥0.42 (highly N enriched). To our knowledge, our study is the first to report on mechanistic changes in gross rates of soil N cycling and abiotic NO3 retention under ambient N enrichment gradient. Gross N mineralization, NH4+ immobilization, gross nitrification, and NO3 immobilization rates increased up to intermediate N enrichment level and somewhat decreased at highly N-enriched condition. The turnover rates of NH4+ and microbial N pools increased while the turnover rates of the NO3 pool decreased across the N enrichment gradient. Abiotic immobilization of NH4+ did not differ across sites and was lower than that of NO3. Abiotic NO3 immobilization decreased across the N enrichment gradient. Microbial assimilation and turnover appeared to contribute largely to the retention of NH4+. The increasing NO3 deposition and decreasing turnover rates of the NO3 pool, combined with decreasing abiotic NO3 retention, possibly contributed to increasing NO3 leaching and gaseous emissions across the N enrichment gradient. The empirical relationships of changes in microbial N cycling across the N enrichment gradient may be integrated in models used to predict responses of forest ecosystems (e.g. spruce) to increasing N deposition.  相似文献   

17.
The effects of select monoterpenes on nitrogen (N) mineralization and nitrification potentials were determined in four separate laboratory bioassays. The effect of increasing monoterpene addition was an initial reduction in NO3 -N production (nitrification inhibition), followed by a reduction in the sum of NH4 +-N and NO3 -N (inhibition of net N mineralization and net immobilization at high monoterpene additions. Monoterpenes could produce this pattern by inhibiting nitrification, reducing net N mineralization, enhancing immobilization of NO3 -N relative to NH4 +-N, and/or stimulating overall net immobilization of N by carbon-rich material.Initial monoterpene concentrations in the assay soils were about 5% of the added amount and were below detection after incubation in most samples.Potential N mineralization-immobilization, nitrification, and soil monoterpene concentrations were determined by soil horizon for four collections from a ponderosa pine (Pinus ponderosa) stand in New Mexico. Concentrations of monoterpenes declined exponentially with soil depth and varied greatly within a horizon. Monoterpene content of the forest floor was not correlated with forest floor biomass. Net N mineralization was inversely correlated with total monoterpene content of all sampled horizons. Nitrification was greatest in the mineral soil, intermediate in the F-H horizon, and never occurred in the L horizon. Nitrification in the mineral soil was inversely correlated with the amount of monoterpenes in the L horizon that contain terminal unsaturated carbon-carbon bonds (r 2 = 0.37, P 0.01). This pattern in the field corresponded to the pattern shown in the laboratory assays with increasing monoterpene additions.  相似文献   

18.
Gross and net nitrogen (N) ammonification and nitrification were measured in soils from an uncut and recently cut upland and peatland conifer stand in northwestern Ontario, Canada. Rates of gross total inorganic N immobilization were similar to gross mineralization, resulting in low net mineralization rates in soils from all four upland and peatland conifer stands. Gross ammonification rates were variable but similar in soils from uncut and cut peatland hollows (18–19mgNkg–1day–1) and upland forest floor soils (14–19mgNkg–1day–1). Gross ammonium ( ) immobilization rates were also variable but similar to ammonification rates. Median gross nitrification rates were within 0–2mgNkg–1day–1 in soils from all four upland and peatland cut and uncut stands, although rates were consistently higher for the soils from the cut stands. Large variability in gross nitrification rates were observed in peatland soils, however the highest gross nitrification rates were measured in saturated peatland soils. Net rates remained low in the soils from all four stands due to high nitrate ( ) immobilization and very fast turnover (<0.2 day). Our results suggest that potential losses may be negated by high immobilization in uncut and cut boreal forest stands. This study reveals the potential for the interaction of N production and consumption processes in regulating N retention in upland and peatland conifer forests, and the resilience of the boreal forest to disturbance.  相似文献   

19.
Seasonal variability in biogeochemical signatures was used to elucidate the dominant pathways of soil microbial metabolism and elemental cycling in an oligotrophic mangrove system. Three interior dwarf mangrove habitats (Twin Cays, Belize) where surface soils were overlain by microbial mats were sampled during wet and dry periods of the year. Porewater equilibration meters and standard biogeochemical methods provided steady-state porewater profiles of pH, chloride, sulfate, sulfide, ammonium, nitrate/nitrite, phosphate, dissolved organic carbon, nitrogen, and phosphorus, reduced iron and manganese, dissolved inorganic carbon, methane and nitrous oxide. During the wet season, the salinity of overlying pond water and shallow porewaters decreased. Increased rainwater infiltration through soils combined with higher tidal heights appeared to result in increased organic carbon inventories and more reducing soil porewaters. During the dry season, evaporation increased both surface water and porewater salinities, while lower tidal heights resulted in less reduced soil porewaters. Rainfall strongly influenced inventories of dissolved organic carbon and nitrogen, possibly due to more rapid decay of mangrove litter during the wet season. During both times of year, high concentrations of reduced metabolites accumulated at depth, indicating substantial rates of organic matter mineralization coupled primarily to sulfate reduction. Nitrous oxide and methane concentrations were supersaturated indicating considerable rates of nitrification and/or incomplete denitrification and methanogenesis, respectively. More reducing soil conditions during the wet season promoted the production of reduced manganese. Contemporaneous activity of sulfate reduction and methanogenesis was likely fueled by the presence of noncompetitive substrates. The findings indicate that these interior dwarf areas are unique sites of nutrient and energy regeneration and may be critical to the overall persistence and productivity of mangrove-dominated islands in oligotrophic settings.  相似文献   

20.
The S cycle in the water column of a small, soft-water lake was studied for 9 years as part of an experimental study of the effects of acid rain on lakes. The two basins of the lake were artificially separated, and one basin was experimentally acidified with sulfuric acid while the other served as a reference or control. Spatial and seasonal patterns of sulfate uptake by plankton (53–70 mmol m–2 yr–1), deposition of sulfur to sediments in settling seston (53 mmol m–2 yr–1), and sulfate diffusion (0–39 mmol m–2 yr–1) into sediments were examined. Measurements of inputs (12–108 mmol m–2 yr–1) and outputs (5.5–25 mmol m–2 yr–1) allowed construction of a mass balance that was then compared with rates of S accumulation in sediments cores (10–28 mmol m–2 yr–1) and measured fluxes of S into the sediments. Because of the low SO4 2– concentrations (µmole L–1) in the lake, annual uptake by plankton (53–70 mmol m–2 yr–1) represented a large fraction (>50%) of the SO4 2– inventory in the lake. Despite this large flux through the plankton, only small seasonal fluctuations in SO4 2– concentrations (µmole L–1) were observed; rapid mineralization of organic matter (half-life <3 months) prevented sulfate depletion in the water column. The turnover time for sulfate in the water column is only 1.4 yr; much less than the 11-yr turnover time of a conservative ion in this seepage lake. Sulfate diffusion into and reduction in the sediments (0–160 µmole m–2 d–1) caused SO4 2– depletion in the hypolimnion. Modeling of seasonal changes in lake-water SO4 2– concentrations indicated that only 30–50% of the diffusive flux of sulfate to the sediments was permanently incorporated in solid phases, and about 15% of sulfur in settling seston was buried in the sediments. The utility of sulfur mass balances for seepage lakes would be enhanced if uncertainty about the deposition velocity for both sulfate aerosols and SO2, uncertainty in calculation of a lake-wide rate of S accumulation in sediments, and uncertainty in the measured diffusive fluxes could be further constrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号