首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reduced ferredoxin: CO2 oxidoreductase (CO2-reductase) from Clostridium pasteurianum catalyzes the reduction of CO2 to formate at the expense of reduced ferredoxin, an isotopic exchange between CO2 and formate in the absence of ferredoxin, and the oxidation of formate to CO2 with oxidized ferredoxin. The three activities were found to be equally affected by monovalent anions known to be ligands to transition metals: The enzyme was reversibly inhibited by azide (Ki = 0.004mM), cyanate (Ki = 0.3 mM), thiocyanate (Ki = 1mM), nitrite (Ki = 0.4mM), nitrate (Ki = 6mM), chlorate (Ki = 3mM), fluoride (Ki = 5mM), and by chloride, bromide, iodide (Ki greater than 5mM). There was no observable effect of pH on the inhibition constants. The enzyme was not inhibited by carbon monoxide. The enzyme was irreversibly inactivated by low concentrations (10muM) of cyanide. The rate of inactivation increased with increasing pH with an inflection point near pH 9.5. Reduced ferredoxin and formate rather than oxidized ferredoxin or CO2 protected the enzyme from inactivation by cyanide. The enzyme was protected by azide and cyanate from inactivation. In the presence of high concentrations of the monovalent anions the rate of inactivation by heat (55 degrees C), by molecular oxygen, and by cyanide was decreased by a factor of more than 100. Half maximal protection was observed at the Ki concentrations of the two reversible inhibitors. The data are interpreted to indicate that a transition metal of weak "a class" character and a disulfide are catalytically significant groups of CO2-reductase from C. pasteurianum.  相似文献   

3.
1. In the presence of both CO and O2, ox heart cytochrome c oxidase forms a 607 nm-peak intermediate distinct from both the cytochrome a2+a3 2+CO and the cytochrome a3+a3 2+CO ('mixed-valence') CO complexes. 2. This aerobic CO compound is stable towards ferricyanide addition, but decomposed on treatment with ferric cytochrome a2 ligands such as formate, cyanide and azide. 3. Addition of formate or cyanves rise to a complex with alpha-peak at 598 nm, not identical with any azide complex of the free enzyme, but possibly a cytochrome a3 2+NO complex produced by oxidative attack of partially reduced O2 on the azide. 4. The results support the idea that although the initial reaction of oxygen is with cytochrome a3 2+, the next step is not an oxidation of the ferrous cytochrome a3, but a transfer of O2 to a neighbouring group, such as Cu+, to give Cu2+O2- or similar complexes. 5. The aerobic CO complex is then identified as a3+a3 2+COCu2+O2-; a similar compound ('Compound C') is formed by photolysis of a3+a3 2+CO (the 'mixed-valence' CO complex) in the presence of oxygen at low temperatures.  相似文献   

4.
The effect of Mg2, ATP and some of its analogs was studied on the spontaneously active and the ATP-Mg-dependent forms of phosphorylase phosphatase extracted from adrenal cortex. Inhibition of the spontaneously active form was observed with Mg2 (Ki - 9mM), ATP (Ki = 9micronM), 2'-doxy-ATP (Ki = 8 micronM), AtetraP (Ki = 9 micronM), AMP(CH2)PP (Ki = 11 micronM), ADP(CH2)P (Ki = 19 micronM), ADP(NH)P (Ki = 16micronM) and ADP (Ki = 25micronM). Activation of the ATP-Mg-dependent form was obtained with Mg2 (Ka = 0.55mM) (to a lower extent) and with ATP (Ka = 2micronM), 2'-deoxy-ATP (Ka = 6micronM) or AtetraP (Ka = 15micronM) in the presence of 0.5mM Mg2. Activation with AMP(CH2)PP was only observed in the presence of high concentrations (5mM) of Mg2 (Ka = 13micronM). No activation at all was observed with ADP(CH2)P or ADP(NH)P. Even though the activation of the ATP-Mg-dependent form does not seem to involve a kinase reaction, the stimulation by ATP or its analogs is rather specific, since it does not occur with analogs in which a methylene group or a nitrogen is substituted for the oxygen between the beta- and gamma-phosphates.  相似文献   

5.
M R Hyman  S A Ensign  D J Arp  P W Ludden 《Biochemistry》1989,28(17):6821-6826
Carbonyl sulfide (COS) has been investigated as a rapid-equilibrium inhibitor of CO oxidation by the CO dehydrogenase purified from Rhodospirillum rubrum. The kinetic evidence suggests that the inhibition by COS is largely competitive versus CO (Ki = 2.3 microM) and uncompetitive versus methylviologen as electron acceptor (Ki = 15.8 microM). The data are compatible with a ping-pong mechanism for CO oxidation and COS inhibition. Unlike the substrate CO, COS does not reduce the iron-sulfur centers of dye-oxidized CO dehydrogenase and thus is not an alternative substrate for the enzyme. However, like CO, COS is capable of protecting CO dehydrogenase from slow-binding inhibition by cyanide. A true binding constant (KD) of 2.2 microM for COS has been derived on the basis of the saturable nature of COS protection against cyanide inhibition. The ability of CO, CO2, COS, and related CO/CO2 analogues to reverse cyanide inhibition of CO dehydrogenase is also demonstrated. The kinetic results are interpreted in terms of two binding sites for CO on CO dehydrogenase from R. rubrum.  相似文献   

6.
A wide spectrum of respiratory inhibitors has been found tostimulate the breaking of dormancy in barley. These includecarbon monoxide, cyanide, azide, hydrogen sulphide, sodium sulphide,hydroxylamine, diethyldithiocarbamate (DIECA), fluoride, iodoacetate,malonate, monofluoroacetate, and 2,4-dinitrophenol (DNP). Inrice, only the first six of these have been shown to be effective.Apart from CO, all the above inhibitors were tested on winteroats, but in this material only cyanide, azide, and hydroxylaminewere found to increase the germination of dormant seeds. Allthe terminal-oxidase inhibitors except CO were tested on perennialryegrass, but in this case only cyanide was found to break dormancy. As compared with air, an atmosphere of 96 per cent oxygen appliedto barley during the first 24 h after the seeds have been setto germinate stimulates the breaking of dormancy. When appliedat later stages, this high oxygen tension inhibits the germinationof dormant seeds although it has no effect on nondormant seeds.Paradoxically, the stimulatory effects of respiratory inhibitorsapplied during the initial stages of germination are relatedto their ability to inhibit oxygen uptake. Thus cyanide, azide,malonate, and monofluoroacetate, while stimulating the breakingof dormancy in barley, also inhibit oxygen uptake. In rice,cyanide and azide had similar effects, but fluoride, which hadno effect on dormancy, also had no effect on the oxygen uptakeof dormant seeds. These results are compatible with the hypothesis that some oxidationreaction is necessary for germination. This oxidation is notpart of the normal respiratory pathway, and does not proceedsatisfactorily in dormant seeds. It may be stimulated, however,by increasing the oxygen tension or by reducing normal respiratorycompetition with respiratory inhibitors.  相似文献   

7.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

8.
Extracts of aerobically, CO-autotrophically grown cells of Pseudomonas carboxydovorans were shown to catalyze the oxidation of CO to CO(2) in the presence of methylene blue, pyocyanine, thionine, phenazine methosulfate, or toluylene blue under strictly anaerobic conditions. Viologen dyes and NAD(P)(+) were ineffective as electron acceptors. The same extracts catalyzed the oxidation of formate and of hydrogen gas; the spectrum of electron acceptors was identical for the three substrates, CO, formate, and H(2). The CO- and the formate-oxidizing activities were found to be soluble enzymes, whereas hydrogenase was membrane bound exclusively. The rates of oxidation of CO, formate, and H(2) were measured spectrophotometrically following the reduction of methylene blue. The rate of carbon monoxide oxidation followed simple Michaelis-Menten kinetics; the apparent K(m) for CO was 45 muM. The reaction rate was maximal at pH 7.0, and the temperature dependence followed the Arrhenius equation with an activation energy (DeltaH(0)) of 35.9 kJ/mol (8.6 kcal/mol). Neither free formate nor hydrogen gas is an intermediate of the CO oxidation reaction. This conclusion is based on the differential sensitivity of the activities of formate dehydrogenase, hydrogenase, and CO dehydrogenase to heat, hypophosphite, chlorate, cyanide, azide, and fluoride as well as on the failure to trap free formate or hydrogen gas in coupled optical assays. These results support the following equation for CO oxidation in P. carboxydovorans: CO + H(2)O --> CO(2) + 2 H(+) + 2e(-) The CO-oxidizing activity of P. carboxydovorans differed from that of Clostridium pasteurianum by not reducing viologen dyes and by a pH optimum curve that did not show an inflection point.  相似文献   

9.
R. Wever  B. F. Van Gelder 《BBA》1974,368(3):311-317
1. The photodissociation reaction of the cytochrome c oxidase-CO compound in the presence of azide was studied by EPR at 15°K. Addition of CO in the dark to cytochrome c oxidase, partially reduced (2 electrons per 4 metal ions) in the presence of azide brings about a decrease in intensity of the azide-induced low-spin heme signal at g = 2.9, 2.2 and 1.67 and an increase in intensity of both the low-spin heme signal at g = 3 and the copper signal at g = 2. Subsequent illumination with white light at room temperature of this sample causes an enhancement of the azide-induced signal at g = 2.9, and a decrease in intensity of both signals at g = 3 and g = 2. It is shown that these changes in the EPR spectrum are reversible.

2. These results demonstrate that upon photodissociation, CO is replaced by azide wheras upon incubation in the dark CO expels azide from its binding site in cytochrome c oxidase.

3. Concomitantly with the binding of CO and dissociation of the azide molecule, and vice versa, electron redistributions occur as inferred from the changes in the intensity of the copper signal at g = 2.

4. The results are explained in a model of cytochrome c oxidase with either a common binding site (cytochrome a3)* for CO and azide or in a model with anti-cooperative interaction between two different sites of binding.

5. Similar types of experiments with cyanide instead of azide show that cyanide is more firmly bound to partially reduced cytochrome c oxidase than CO and azide. The affinity of ligands for partially reduced enzyme decreases in the sequence: cyanide, CO (dark), azide and CO (illuminated).  相似文献   


10.
Whole cells and cell-free preparations of the methylotrophic bacteria, Pseudomonas sp. AM 1 and Achromobacter parvulus, can oxidize formate at tis concentration in the reaction medium up to 1 M. The respiration of whole cells is registered at a concentration of formate greater than 10(-2) M, while that of cell-free extracts at a formate concentration greater than 5 X 10(-5) M. This seems to be due to the presence of a permeability barrier in cells for formate. The oxidation of reduced TMPD and exogenous cytochrome c by the membrane preparations of the two bacteria is inhibited by formate and cyanide; Ki50% = 2.5 X 10(-2) and 10(-6) M, respectively. The oxidation of NADH by the membrane preparations of the bacteria is not inhibited by 1 M formate and 5 X 10(-4) M cyanide but is inhibited by formaldehyde with Ki50% = 3 X 10(-2) M. Formaldehyde has no effect on the oxidation of reduced TMPD and cytochrome c at concentrations greater than 2 X 10(-1) M. These data indicate that respiration of the studied methylotrophic bacteria in the presence of high formate concentrations should be attributed in the presence of a branched electron transport chain in them; one branch of the chain is resistant to formate and cyanide, but is sensitive to formaldehyde.  相似文献   

11.
The growth of Pseudomonas fluorescens NCIMB 11764 on cyanide as the sole nitrogen source was accomplished by use of a modified fed-batch cultivation procedure. Previous studies showing that cyanide metabolism in this organism is both an oxygen-dependent and an inducible process, with CO2 and ammonia representing conversion products, were confirmed. However, washed cells (40 mg ml-1 [dry weight]) metabolized cyanide at concentrations far exceeding those previously described; 85% of 50 mM KCN was degraded in 6 h. In addition, two other C1 metabolites were detected in incubation mixtures; their identities were confirmed as formamide and formate by 13C nuclear magnetic resonance spectrocopy, high-pressure liquid chromatography, radioisotopic trapping experiments, and other analytical means. The relative yields of all four metabolites (CO2, formamide, formate, and ammonia) were shown to be dependent on the KCN concentration and availability of oxygen; at 0.5 to 10 mM substrate, CO2 was the major C1 product, whereas at 20 and 50 mM substrate, formamide and formate were principally formed. The latter two metabolites also accumulated during prolonged anaerobic incubation, suggesting that P. fluorescens NCIMB 11764 can elaborate several pathways of cyanide conversion. One is formally similar to that proposed previously (R. E. Harris and C. J. Knowles, FEMS Microbiol. Lett. 20:337-341, 1983), involving the oxygen-dependent conversion of cyanide to CO2 and ammonia. The other two, occurring in the presence or absence of oxygen, involve separate reactions to yield, respectively, formate plus ammonia or formamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Paul Nijs 《BBA》1967,143(3):454-461
1. A series of eight classical respiratory-chain inhibitors was studied. The slopes of State-3 respiratory rate versus dose plots are convex for antimycin, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), rotenone and sulfide, and concave for malonate, Amytal, cyanide and azide.

2. Plots of ADP: O ratio versus dose indicate uncoupling effects at higher concentrations of antimycin, HOQNO, cyanide and azide. On the other hand, sulfide and rotenone have no effect on the phosphorylating efficiency. Malonate increases the ADP: O ratio.

3. Two inhibitors can be combined in such a way that the total inhibition should be equal to the inhibition caused by the single inhibitors if each inhibitor affects respiration independently (additivity of inhibition). In practice, however, antagonism and synergism are also found.

4. Additivity of combined inhibition occurs where both inhibitors act on the same enzyme.

5. Antagonism is observed where the two inhibitors act on different enzymes of the same chain.

6. Synergism is found where the two inhibitors act on enzymes in different branches of a forked chain. This turns into normal additivity when the electron flow through both branches is made equal.

7. The results are compatible with the hypothesis that respiratory enzymes are arranged in chains. The possibility that the chains may be cross-linked or branched is discussed.  相似文献   


13.
The growth of Pseudomonas fluorescens NCIMB 11764 on cyanide as the sole nitrogen source was accomplished by use of a modified fed-batch cultivation procedure. Previous studies showing that cyanide metabolism in this organism is both an oxygen-dependent and an inducible process, with CO2 and ammonia representing conversion products, were confirmed. However, washed cells (40 mg ml-1 [dry weight]) metabolized cyanide at concentrations far exceeding those previously described; 85% of 50 mM KCN was degraded in 6 h. In addition, two other C1 metabolites were detected in incubation mixtures; their identities were confirmed as formamide and formate by 13C nuclear magnetic resonance spectrocopy, high-pressure liquid chromatography, radioisotopic trapping experiments, and other analytical means. The relative yields of all four metabolites (CO2, formamide, formate, and ammonia) were shown to be dependent on the KCN concentration and availability of oxygen; at 0.5 to 10 mM substrate, CO2 was the major C1 product, whereas at 20 and 50 mM substrate, formamide and formate were principally formed. The latter two metabolites also accumulated during prolonged anaerobic incubation, suggesting that P. fluorescens NCIMB 11764 can elaborate several pathways of cyanide conversion. One is formally similar to that proposed previously (R. E. Harris and C. J. Knowles, FEMS Microbiol. Lett. 20:337-341, 1983), involving the oxygen-dependent conversion of cyanide to CO2 and ammonia. The other two, occurring in the presence or absence of oxygen, involve separate reactions to yield, respectively, formate plus ammonia or formamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Oxygenation of carbon monoxide by bovine heart cytochrome c oxidase   总被引:1,自引:0,他引:1  
Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1), as the terminal enzyme of the mammalian mitochondrial electron transport chain, has long been known to catalyze the reduction of dioxygen to water. We have found that when reductively activated in the presence of dioxygen, the enzyme will also catalyze the oxidation of carbon monoxide to its dioxide. Two moles of carbon dioxide is produced per mole of dioxygen, and similar rates of production are observed for 1- and 2-electron-reduced enzyme. If 13CO and O2 are used to initiate the reaction, then only 13CO2 is detected as a product. With 18O2 and 12CO, only unlabeled and singly labeled carbon dioxide are found. No direct evidence was obtained for a water-gas reaction (CO + H2O----CO2 + H2) of the oxidase with CO. The CO oxygenase activity is inhibited by cyanide, azide, and formate and is not due to the presence of bacteria. Studies with scavengers of partially reduced dioxygen show that catalase decreases the rate of CO oxygenation.  相似文献   

15.
Adenylosuccinate synthetase (EC 6.3.4.4) from rabbit muscle efficiently catalyzes the formation of 2'-deoxyadenylosuccinate and beta-D-arabinosylade-nylosuccinate from 2'-dIMP and beta-D-arabinosylIMP (Spector, T. and Miller, RL. (1976) Biochim. Biophys. Acta 445, 509-517). These novel analogs of adenylosuccinate were synthesized with this enzyme and their kinetic constants were determined with adenylosuccinate lyase purified from Ehrlich ascites cells. 2'-Deoxyadenylosuccinate and beta-D-arabinosyladenylosuccinate were readily cleaved to 2'-dAMP and beta-D-arabinosylAMP, respectively. Their Km values were similar to that of adenylosuccinate (3-6 micronM) and their substrate efficiencies (V/Km) were 120 for 2-deoxyadenylosuccinate and 32 for beta-D-arabinosyl-adenylosuccinate, compared to a value of 100 for adenylosuccinate. The products of the reactions, 2'-dAMP and beta-D-arabinosylAMP, were competitive inhibitors with Ki values of 5 and 87 micronM, respectively. ATP and ADP were considerably weaker competitive inhibitors with Ki values of 200-300 micronM. IMP, GMP, xanthosine 5'-monophosphate, 6-thioIMP and 6-thioGMP had Ki values greater than 200 micronM.  相似文献   

16.
D. F. Wilson 《BBA》1967,131(3):431-440
Azide inhibition of coupled mitochondrial transport is accompanied by spectral changes which indicate that the cytochrome a3 is oxidized and cytochrome a reduced. The cytochrome a absorption band is shifted to shorter wavelengths in the azideinhibited system. This shift in the absorption band can be reversed by conditions leading to reduction of cytochrome a3 such as uncouplers and anaerobiosis, or terminal inhibitors such as sulfide, cyanide or CO.

Titrations of the azide-induced spectral changes indicate the binding of one azide molecule in the complex, and that the dissociation constant is experimentally indistinguishable from the uncompetitive inhibitor constants for inhibition of State 3 respiration. The azide inhibition is postulated to involve the formation of a reduced cytochrome a azide compound which is unstable in the presence of reduced cytochrome a3.  相似文献   


17.
1. The spectral shifts induced on the binding of H2S to ferric cytochrome aa3 are similar to those induced by cyanide, reflecting a possible high- to low-spin state change in the a3 haem. Opposite shifts are seen with either formate or low azide concentrations, while high azide concentrations reverse the change induced at lower concentrations. The unusually high Soret band in the half-reduced sulphide-inhibited species (a2+a33+H2S) results from the superposition of cytochrome a2+ and cytochrome a33+H2S peaks. 2. The difference spectra in the visible region for cytochrome a2+ minus cytochrome a3+ obtained with four inhibitors (cytochrome a2+ a3+I minus minus a3+a33+I)are similar, except that azide and sulphide induce blue shifts of the alpha-peak. The trough in the Soret region for the azide complex is much deeper than that for the other complexes, suggesting changes in the cytochrome a33+HN3 centre on reduction of cytochrome a. 3. The "oxygenated" and "high-energy" forms of cytochrome aa3 both involve spectral changes at the a3 haem similar to the changes induced by cyanide and sulphide. The spectrum of partially reduced cytochrome aa3 in the presence of reductant and oxygen indicates the steady-state occurrence of appreciable levels of low-spin (oxygenated) cytochrome aa3. These may be important for energy conservation during the action of cytochrome aa3 in the intact mitochondrial membrane.  相似文献   

18.
1. Respiration of growing cultures of Acanthamoeba castellanii is inhibited less than 60% by azide (35 mM); the respiration of early-exponential-phase cultures differs from that of late-exponential-phase cultures in being stimulated by up to 120% by low concentrations (less than 1 mM) of this inhibitor. Azide (0.5 mM) plus 1 mM-salicylhydroxamic acid gives 80% inhibition of respiration in early- or late-exponential-phase cultures. 2. Lineweaver-Burk plots of 1/v against 1/[O2] for growing and stationary-phase cultures give values of less than 1 muM for the apparent Km for oxygen. 3. These values are not significantly altered when determined in the presence of 1 mM-salicylhydroxamic acid. 4. Higher values (greater than 7 muM) for apparent Km values for oxygen were obtained in the presence of azide, which gives non-linear Lineweaver-Burk plots. 5. Competitive inhibition of respiration by CO occurs with Ki 2.4 muM. 6. The results are discussed in terms of the presence of three terminal oxidases in this organism, namely two oxidases with high affinities for oxygen (cytochrome c oxidase of the main phosphorylating electron-transport chain and the salicylhydroxamic acid-sensitive oxidase) and a third oxidase with a low affinity for oxygen, sensitive to inhibition by cyanide but not by azide or salicylhydroxamic acid. The relative contributions to oxygen utilization by these oxidases change during the growth of a batch culture.  相似文献   

19.
A study of the electron transport chain of the human intestinal pathogen Campylobacter jejuni revealed a rich complement of b- and c-type cytochromes. Two c-type cytochromes were partially purified: one, possibly an oxidase, bound carbon monoxide whereas the other, of high potential was unreactive with carbon monoxide. Respiratory activities determined with membrane vesicles were 50- to 100-fold higher with formate and hydrogen than with succinate, lactate, malate, or NADH as substrates. Evidence for three terminal respiratory components was obtained from respiratory kinetic studies employing cyanide, and the following Ki values for cyanide were determined from Dixon plots: ascorbate + reduced N,N,N', N'-tetramethyl-p-phenylenediamine, K1 + 3.5 muM; malate, K1 = 55 muM; and hydrogen, K1 = 4.5 muM. Two oxidases (K1 = 90 muM, 4.5 mM) participated in the oxidation of succinate, lactate, and formate. Except with formate, 37 muM HQNO inhibited respiration by approximately 50%. Carbon monoxide had little inhibitory effect on respiration except under low oxygen tension (less than 10% air saturation). The stoichiometry of respiratory-driven proton translocation (H+/O) determined with whole cells was approximately 2 for all substrates examined except hydrogen (H+/) = 3.7) and formate (H+/O = 2.5). The higher stoichiometries observed with hydrogen and formate are consistent with their respective dehydrogenase being located on the periplasmic face of the cytoplasmic membrane. The results of this study suggest that the oxidation of hydrogen and formate probably serves as the major sources of energy for growth.  相似文献   

20.
Abstract Washed cell suspensions of Crithidia oncopelti oxidizing a variety of substrates gave complex plots for the inhibition of respiration by potassium cyanide or azide. The data indicated the presence of at least two and possibly three terminal oxidases on the basis of their differential sensitivity to these inhibitors. The oxidase most sensitive to cyanide, azide and CO accounted for approx. 65–70% of whole cell respiration and is probably cytochrome oxidase a/a3. A second oxidase exhibiting low affinity for CO required high concentrations of KCN or azide for inhibition. This haemoprotein had the spectral characteristics of cytochrome o and accounted for 15–20% of cell respiration. Incomplete inhibition of respiration by high concentrations of KCN or azide suggested the presence of a third oxidase which was CO-unreactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号