首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The specific binding sites for tissue-type plasminogen activator (t-PA) were investigated in human umbilical vein endothelial cells. After adding 125I-t-PA (M.W. 70 kDa) to endothelial cells in suspension culture, the ligand was recovered from the cell extract after disuccinimidyl suberate treatment as a high molecular complex with M.W. of 90 kDa on SDS-PAGE. The complex reacted to only anti-t-PA IgG but not to anti-PAI-1 IgG immunoblot analysis, indicating a t-PA specific binding protein. 125I-t-PA ligand blotting of the cell extract revealed that the binding protein had M.W. 20 kDa. The binding of 125I-t-PA to endothelial cells was reduced in the presence of an excess amount of t-PA, plasminogen and 6-aminohexanoic acid, indicating that the binding sites were also recognized by plasminogen, and that t-PA and plasminogen were bound via lysine binding sites in the molecule. These findings suggest that human endothelial cells have specific t-PA binding molecules which may be expressed on the cell surface as t-PA receptors.  相似文献   

2.
Previous studies from this laboratory have demonstrated that plasminogen binds to endothelial cell surface-associated actin via its kringles in a dose-dependent and specific manner. The purpose of this study was to determine whether angiostatin, a proteolytic fragment of plasminogen, shares binding properties with plasminogen. Our results indicated that like plasminogen, angiostatin bound to actin in a time-, concentration-, and kringle-dependent manner. Furthermore, this binding was significantly inhibited by excess plasminogen, suggesting that both proteins shared binding motifs on the actin molecule. Fluorescence studies demonstrated that angiostatin bound to intact endothelial cells through its kringles, and this binding was also inhibited by plasminogen but not by unrelated proteins. Ligand blot analyses on endothelial cell lysates indicated that angiostatin interacted with a 42 kDa protein, which was identified as actin. Furthermore, an anti-actin antibody inhibited binding of angiostatin to endothelial cells by approximately 25%. These results suggest that angiostatin and plasminogen share binding to endothelial cell surface actin and, therefore, that angiostatin has the potential to inhibit plasmin-dependent processes such as cell migration-movement.  相似文献   

3.
The endothelium may contribute to fibrinolysis through the binding of plasminogen activators or plasminogen activator inhibitors to the cell surface. Using a solid-phase radioimmunoassay, we observed that antibodies to recombinant tissue-type plasminogen activator (rt-PA) and plasminogen activator inhibitor type 1 (PAI-1) bound to the surface of cultured human umbilical vein endothelial cells (HUVEC). HUVEC also specifically bound added radiolabeled rt-PA with apparent steady-state binding being reached by 1 h at 4 degrees C. When added at low concentrations (less than 5 nM), rt-PA bound with high affinity mainly via the catalytic site, forming a sodium dodecyl sulfate-stable 105-kDa complex which dissociates from the cell surface over time and which could be immunoprecipitated by a monoclonal antibody to PAI-1. rt-PA bound to this high affinity site retained less than 5% of its expected plasminogen activator activity. At higher concentrations, binding did not require the catalytic site and was rapidly reversible. rt-PA initially bound to this site retained plasminogen activator activity. These studies suggest that tissue-type plasminogen activator and PAI-1 are expressed on the surface of cultured HUVEC. HUVEC also express unoccupied binding sites for exogenous tissue-type plasminogen activator. The balance between the expression of plasminogen activator inhibitors and these unoccupied binding sites for plasminogen activators on the endothelial surface may contribute to the regulation of fibrinolysis.  相似文献   

4.
Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85–90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin’s interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15–20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin’s binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.  相似文献   

5.
The interaction of urokinase-type plasminogen activators with receptors on the surface of endothelial cells may play an important role in the regulation of fibrinolysis and cell migration. Therefore, we investigated whether human umbilical vein endothelial cells (HUVEC) express receptors for single-chain urokinase (scu-PA) on the cell surface and examined the effect of such binding on plasminogen activator activity. Binding of 125I-labeled scu-PA to HUVEC, performed at 4 degrees C, was saturable, reversible, and specific (k+1 4 +/- 1 X 10(6) min-1 M-1, k-1 6.2 +/- 1.4 X 10(-3) min-1, Kd 2.8 +/- 0.1 nM; Bmax 2.2 +/- 0.1 X 10(5) sites/cell; mean +/- S.E.). Binding of radiolabeled scu-PA was inhibited by both natural and recombinant wild-type scu-PA, high molecular weight two-chain u-PA (tcu-PA), catalytic site-inactivated tcu-PA, an amino-terminal fragment of u-PA (amino acids 1-143), and a smaller peptide (amino acids 4-42) corresponding primarily to the epidermal growth factor-like domain. Binding was not inhibited by low molecular weight urokinase or by a recombinant scu-PA missing amino acids 9-45. Cell-bound scu-PA migrated at its native molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of plasminogen, scu-PA bound to endothelial cells generated greater plasmin activity than did scu-PA in the absence of cells. In contrast, when tcu-PA was added directly to HUVEC, sodium dodecyl sulfate-stable complexes formed with cell or matrix-associated plasminogen activator inhibitors with a loss of plasminogen activator activity. These studies suggest that endothelial cells in culture express high affinity binding sites for the epidermal growth factor domain of scu-PA. Interaction of scu-PA with these receptors may permit plasminogen activator activity to be expressed at discrete sites on the endothelial cell membrane.  相似文献   

6.
On the basis of 125I-labeled plasminogen activator binding analysis we have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a Kd of 0.8958 x 10(-9) M [corrected]. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.  相似文献   

7.
《The Journal of cell biology》1986,103(6):2411-2420
The capacity of cells to interact with the plasminogen activator, urokinase, and the zymogen, plasminogen, was assessed using the promyeloid leukemic U937 cell line and the diploid fetal lung GM1380 fibroblast cell line. Urokinase bound to both cell lines in a time- dependent, specific, and saturable manner (Kd = 0.8-2.0 nM). An active catalytic site was not required for urokinase binding to the cells, and 55,000-mol-wt urokinase was selectively recognized. Plasminogen also bound to the two cell lines in a specific and saturable manner. This interaction occurred with a Kd of 0.8-0.9 microM and was of very high capacity (1.6-3.1 X 10(7) molecules bound/cell). The interaction of plasminogen with both cell types was partially sensitive to trypsinization of the cells and required an unoccupied high affinity lysine-binding site in the ligand. When plasminogen was added to the GM1380 cells, a line with high intrinsic plasminogen activator activity, the bound ligand was comprised of both plasminogen and plasmin. Urokinase, in catalytically active or inactive form, enhanced plasminogen binding to the two cell lines by 1.4-3.3-fold. Plasmin was the predominant form of the bound ligand when active urokinase was added, and preformed plasmin can also bind directly to the cells. Plasmin on the cell surface was also protected from its primary inhibitor, alpha 2-antiplasmin. These results indicate that the two cell lines possess specific binding sites for plasminogen and urokinase, and a family of widely distributed cellular receptors for these components may be considered. Endogenous or exogenous plasminogen activators can generate plasmin on cell surfaces, and such activation may provide a mechanism for arming cell surfaces with the broad proteolytic activity of this enzyme.  相似文献   

8.
Cultured human endothelial cells synthesize and secrete two types of plasminogen activator, tissue plasminogen activator (t-PA) and urokinase (u-PA). Previous work from this laboratory (Hajjar, K.A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest. 80, 1712-1719) has demonstrated dose-dependent, saturable, and high affinity binding of t-PA to two sites associated with cultural endothelial cell monolayers. We now report that an isolated plasma membrane-enriched endothelial cell fraction specifically binds 125I-t-PA at a single saturable site (Kd 9.1 nM; Bmax 3.1 pmol/mg membrane protein). Ligand blotting experiments demonstrated that both single and double-chain t-PA specifically bound to a Mr 40,000 membrane protein present in detergent extracts of isolated membranes, while high molecular weight, low molecular weight, and single-chain u-PA associated with a Mr 48,000 protein. Both binding interactions were reversible and cell-specific and were inhibitable by pretreatment of intact cells with nanomolar concentrations of trypsin. The relevant binding proteins were not found in subendothelial cell matrix, failed to react with antibodies to plasminogen activator inhibitor type 1 and interacted with their respective ligands in an active site-independent manner. The isolated t-PA binding site was resistant to reduction and preserved the capacity for plasmin generation. In contrast, the isolated u-PA binding protein was sensitive to reduction, and did not maintain the catalytic activity of the ligand on the blot. The results suggest that in addition to sharing a matrix-associated binding site (plasminogen activator inhibitor type 1), both t-PA and u-PA have unique membrane binding sites which may regulate their function. The results also provide further support for the hypothesis that plasminogen and t-PA can assemble on the endothelial cell surface in a manner which enhances cell surface generation of plasmin.  相似文献   

9.
Binding and activation of plasminogen on the platelet surface   总被引:18,自引:0,他引:18  
A mechanism by which platelets might participate in fibrinolysis by binding plasminogen and influencing its activation has been examined. Binding of radioiodinated human Glu-plasminogen to washed human platelets was time-dependent and was enhanced 3-9-fold by stimulation of platelets with thrombin but not with ADP. The interaction with both stimulated and unstimulated cells was specific, saturable, divalent ion-independent, and reversible. The platelet-bound ligand had the molecular weight of plasminogen, and no conversion to plasmin was detected. Scatchard analyses provided evidence for a single class of plasminogen-binding sites on both stimulated and unstimulated cells. The Kd for thrombin-stimulated platelets was 2.6 +/- 1.3 microM, and 190,000 +/- 45,000 molecules were bound per cell, whereas unstimulated platelets bound 37,000 +/- 10,500 molecules/cell with a Kd of 1.9 +/- 0.15 microM. Plasminogen binding was inhibited in a dose-dependent manner by omega-aminocarboxylic acids at concentrations consistent with a requirement for an unoccupied high affinity lysine-binding site for plasminogen binding to the cells. When platelet-bound plasminogen was incubated with tissue plasminogen activator, urokinase, or streptokinase, gel analysis established that plasmin was preferentially associated with the platelet relative to the supernatant. Plasminogen and plasmin interacted with thrombin-stimulated platelets with similar binding characteristics, and there was no evidence for a binding site for plasmin which did not also bind plasminogen. Therefore, the results suggest that plasminogen activation is enhanced on the cell surface. In sum, these results indicate that platelets bind plasminogen at physiologic zymogen concentrations and this interaction may serve to localize and promote plasminogen activation.  相似文献   

10.
Nonenzymatic glycosylation of proteins, as occurs at an accelerated rate in diabetes, can lead to the formation of advanced glycosylation end products of proteins (AGEs), which can bind to endothelial cells, thereby altering cellular function in a manner which could contribute to the pathogenesis of diabetic angiopathy. In this report, we describe the isolation of two endothelial cell surface-associated proteins which mediate, at least in part, the interaction of AGEs with endothelium. Based on pilot studies demonstrating AGE binding activity with comparable characteristics in bovine endothelial cell and lung extracts, the material from lung was sequentially subjected to chromatography on hydroxylapatite, fast protein liquid chromatography Mono S, and gel filtration. Two distinct polypeptides, approximately 35 and approximately 80 kDa, were purified to homogeneity, each of which bound AGEs as demonstrated by competitive binding assays using cellular binding proteins immobilized on a plastic surface. NH2-terminal sequence analysis indicated that the approximately 35-kDa protein was novel, whereas the NH2-terminal sequence of the approximately 80-kDa protein was identical to that of lactoferrin. Immunocytologic studies using polyclonal antibody prepared to each of the purified polypeptides demonstrated the presence of immunoreactive material on the surface of bovine endothelial cells maintained under serum-free conditions. Furthermore, immunoelectron microscopic studies with antibodies to the approximately 35- and approximately 80-kDa AGE-binding proteins conjugated to different size colloidal gold particles confirmed the presence of the target antigens on the cell surface and suggested that they were closely associated. IgG purified from polyclonal antisera to either the 35- or 80-kDa AGE-binding proteins blocked the binding of 125I-AGE-albumin to the cell surface. These results indicate that endothelial cells express specific cell surface molecules which mediate AGE-endothelial interaction. These polypeptides represent a novel class of cell surface acceptor molecules for glucose-modified proteins which may promote degradation and/or transcytosis of the ligand, and modulation of cellular function.  相似文献   

11.
Several human melanoma cell lines produced tissue-type plasminogen activator (t-PA), as detected by zymography and immunocapture assay of culture media and cell lysates. Urokinase (u-PA) was found at only less than or equal to 1% the level of t-PA. Acid eluates of the cell surface indicated that the melanoma cells had t-PA bound on their surface, but no u-PA, and also had a very low capacity to bind exogenous u-PA. After incubation of the melanoma cells with 10% plasminogen-depleted fetal calf serum and human plasminogen, bound plasmin activity could be eluted from the cell surface with tranexamic acid, an analogue of lysine. This indicated that plasminogen was activated on the cell surface. The cell-surface plasmin formation was inhibited by an anti-catalytic monoclonal antibody to human t-PA, and not by an anti-catalytic antibody to u-PA. The melanoma cells also synthesized and secreted alpha 2-macroglobulin (alpha 2M), as shown by alpha 2M-specific mRNA in Northern blotting and detection of alpha 2M protein in conditioned cell culture media. The media were found to inhibit u-PA but not t-PA. This inhibition was related to their alpha 2M content, and immunoabsorption of alpha 2M removed the inhibitory activity. These studies suggest that t-PA can bind to the surface of melanoma cells and generate surface-bound plasmin. Because t-PA and cell-bound plasmin are unaffected by alpha 2M, t-PA may, in the case of melanoma cells, serve an analogous function to u-PA in supporting tumor cell invasion.  相似文献   

12.
Adult bovine aortic endothelial (ABAE) cells, exposed to serum-free medium, specifically bind 125I-labeled human high-density lipoprotein (125I-HDL). Addition of human lipoprotein-deficient serum (LPDS) reduces the specific binding of 125I-HDL in a concentration-dependent manner, such that LPDS at a concentration of 6 mg protein/ml almost completely inhibits the specific binding of 125I-HDL. ABAE cultures exposed to 125I-labeled LPDS (125I-LPDS) specifically bind two peptides, which appear as minor iodinated components in 125I-LPDS. The binding of these two components is abolished in the presence of excess amounts of unlabeled LPDS or HDL. Preincubation of ABAE cells with 25-hydroxycholesterol (25-HC) results in an increase in the binding of the two 125I-LPDS components, similar to the increase observed in 125I-HDL binding in the presence of 25-HC. These two LPDS components comigrate on sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) with apolipoproteins A-I and A-IV of molecular masses 28 kDa and 43 kDa respectively. Furthermore, these two proteins were transferred from the SDS gel to nitrocellulose paper and interacted specifically with anti-(A-I) and anti-(A-IV) sera respectively. When ABAE cultures, pretreated with 25-HC in the presence of LPDS, are subjected to cell-surface iodination, the A-IV appears as one of the major proteins on the cell surface accessible to iodination. The interaction of A-IV with the cell surface of 25-HC-treated cells is not specific to ABAE cells and appears also in human skin fibroblasts. Analysis of the relative amounts of various apolipoproteins in the 125I-HDL bound to ABAE cells demonstrates a decrease in the relative amount of iodinated A-II concomitant with increase in the relative amounts of the other iodinated apolipoproteins, when compared to the composition of the native 125I-HDL. These changes are similar whether the binding is done in the presence or absence of LPDS. It indicates that the decrease in 125I-HDL binding in the presence of LPDS is not due to displacement of the iodinated apolipoproteins A-I and A-IV in the 125I-HDL by unlabeled A-I and A-IV present in LPDS. The results indicate that free apolipoproteins A-I and A-IV, present in LPDS, can displace HDL on the cell surface of ABAE cells. Thus, free A-I and A-IV, present in plasma, control the binding of HDL to endothelial cells and may regulate the process of cholesterol removal from the cells performed by HDL.  相似文献   

13.
Interaction of plasmin with endothelial cells.   总被引:5,自引:0,他引:5       下载免费PDF全文
Interaction of human plasmin with a monolayer culture of mini-pig aortic endothelial cells was studied by using the 125I-labelled enzyme. The binding of plasmin was time- and concentration-dependent. Equilibrium between bound and free enzyme was obtained within 90s, and Scatchard analysis indicated a high- and a low-affinity population of binding sites of approx. 1.24 X 10(4) sites/cell having a Kd of 1.4 X 10(-9) M and 7.2 X 10(4) sites/cell with a Kd of 2 X 10(-8) M respectively. Plasmin, bound to cell, was spontaneously released within 2 min, suggesting a rapid equilibrium. Chemical modification of the enzyme with phenylmethanesulphonyl fluoride or pyridoxal 5'-phosphate revealed that neither the active centre nor the heparin-binding site of plasmin was involved in the interaction with the endothelial cell. In terms of endothelial-cell receptors, the binding sites of cells for plasmin and thrombin were different: the two enzymes did not compete with each other, and the pretreatment of cells with neuraminidase or chondroitin ABC lyase resulted in a 50% decrease of thrombin or plasmin binding respectively. Arachidonic acid incorporated into phospholipids of the cell was released by plasmin, but a change in the rate of prostacyclin formation was not measurable. The interaction of plasmin with endothelial cells seems to be specific in the fibrinolytic system, since plasminogen did not bind to these cells under similar conditions.  相似文献   

14.
TM601 is a synthetic form of chlorotoxin, a 36-amino acid peptide derived from the venom of the Israeli scorpion, Leirius quinquestriatus, initially found to specifically bind and inhibit the migration of glioma cells in culture. Subsequent studies demonstrated specific in vitro binding to additional tumor cell lines. Recently, we demonstrated that proliferating human vascular endothelial cells are the only normal cell line tested that exhibits specific binding to TM601. Here, we identify annexin A2 as a novel binding partner for TM601 in multiple human tumor cell lines and human umbilical vein endothelial cell (HUVEC). We demonstrate that the surface binding of TM601 to the pancreatic tumor cell line Panc-1 is dependent on the expression of annexin A2. Identification of annexin A2 as a binding partner for TM601 is also consistent with the anti-angiogenic effects of TM601. Annexin A2 functions in angiogenesis by binding to tissue plasminogen activator and regulating plasminogen activation on vascular endothelial cells. We demonstrate that in HUVECs, TM601 inhibits both vascular endothelial growth factor- and basic fibroblast growth factor-induced tissue plasminogen activator activation, which is required for activation of plasminogen to plasmin. Consistent with inhibition of cell surface protease activity, TM601 also inhibits platelet-derived growth factor-C induced trans-well migration of both HUVEC and U373-MG glioma cells.  相似文献   

15.
Streptococcus pneumoniae colonizes the nasopharynx in up to 40% of healthy subjects, and is a leading cause of middle ear infections (otitis media), meningitis and pneumonia. Pneumococci adhere to glycosidic receptors on epithelial cells and to immobilized fibronectin, but the bacterial adhesins mediating these reactions are largely uncharacterized. In this report we describe a novel pneumococcal protein PavA, which binds fibronectin and is associated with pneumococcal adhesion and virulence. The pavA gene, present in 64 independent isolates of S. pneumoniae tested, encodes a 551 amino acid residue polypeptide with 67% identical amino acid sequence to Fbp54 protein in Streptococcus pyogenes. PavA localized to the pneumococcal cell outer surface, as demonstrated by immunoelectron microscopy, despite lack of conventional secretory or cell-surface anchorage signals within the primary sequence. Full-length recombinant PavA polypeptide bound to immobilized human fibronectin in preference to fluid-phase fibronectin, in a heparin-sensitive interaction, and blocked binding of wild-type pneumococcal cells to fibronectin. However, a C-terminally truncated PavA' polypeptide (362 aa residues) failed to bind fibronectin or block pneumococcal cell adhesion. Expression of pavA in Enterococcus faecalis JH2-2 conferred > sixfold increased cell adhesion levels to fibronectin over control JH2-2 cells. Isogenic mutants of S. pneumoniae, either abrogated in PavA expression or producing a 42 kDa C-terminally truncated protein, showed up to 50% reduced binding to immobilized fibronectin. Inactivation of pavA had no effects on growth rate, cell morphology, cell-surface physico-chemical properties, production of pneumolysin, autolysin, or surface proteins PspA and PsaA. Isogenic pavA mutants of encapsulated S. pneumoniae D39 were approximately 104-fold attenuated in virulence in the mouse sepsis model. These results provide evidence that PavA fibronectin-binding protein plays a direct role in the pathogenesis of pneumococcal infections.  相似文献   

16.
We have investigated the binding of soluble tenascin-C (TN-C) to several cell lines using a radioligand binding assay. Specific binding was demonstrated to U-251MG human glioma cells and to a line of bovine aortic endothelial cells, but hamster fibroblasts showed no specific binding. Recombinant proteins corresponding to specific domains of TN-C were used to map the binding site(s) in TN-C. The alternatively spliced segment (TNfnA-D) inhibited the binding of native TN-C most strongly, and itself bound to glioma and endothelial cells. Scatchard analysis of TNfnA-D binding indicated 2-5 x 10(5) binding sites per cell, with an apparent 2 nM dissociation constant. The cell surface receptor for TNfnA-D was identified as a 35-kD protein on the basis of blot binding assays and affinity chromatography of membrane extracts on native TN-C and TNfnA-D columns. Protein sequencing indicated that this 35-kD receptor was annexin II. Annexin II is well characterized as a cytoplasmic protein, so it was surprising to find it as a presumably extracellular receptor for TN-C. To confirm that it was the 35-kD receptor, we obtained purified annexin II and demonstrated its binding to TNfnA-D and TN-C at nM concentrations. Antibodies to annexin II prominently stained the external surface of live endothelial cells and blocked the binding of TNfnA-D to the cells. Thus annexin II appears to be a receptor for the alternatively spliced segment of TN-C, and may mediate cellular responses to soluble TN-C in the extracellular matrix.  相似文献   

17.
Dengue viruses infect cells by attaching to a surface receptor, probably through the envelope (E) glycoprotein, located on the surface of the viral membrane. However, the identity of the dengue virus receptor in the mosquito and in mammalian host cells remains unknown. To identify and characterize the molecules responsible for binding dengue virus, overlay protein blot and binding assays were performed with labeled virus. Two glycoproteins of 40 and 45 kDa located on the surface of C6/36 cells bound dengue type 4 virus. Virus binding by total and membrane proteins obtained from trypsin-treated cells was inhibited, while neuraminidase treatment did not inhibit binding. Periodate treatment of cell proteins did not reduce virus binding, but it modified the molecular weight of the polypeptide detected by overlay assays. Preincubation of C6/36 cells with electroeluted 40- and 45-kDa proteins or with specific antibodies raised against these proteins inhibited virus binding. These results strongly suggest that the 40- and 45-kDa surface proteins are putative receptors or part of a receptor complex for dengue virus.  相似文献   

18.
The effects of concentration and molecular weight of neutral dextrans on the adhesion of human red blood cells (RBC) to albumin-coated glass have been investigated using a parallel-plate flow chamber. Results indicate that the adhesion is markedly increased in the presence of 70 kDa and 500 kDa dextran, with this increase reflected by both the number of cells adhering and the strength of the adhesion. This increased adhesiveness is attributed to reduced surface concentrations of the large polymers and hence attractive forces due to depletion interaction. Depletion interaction brings the adjacent surfaces closer, leading to an increased number of binding sites available to the cell and thus more efficient and stronger adhesion of single cells. Our results suggest that depletion might play a role in other specific cell-cell or cell-surface interactions via initiating close contacts to allow specific binding.  相似文献   

19.
Binding of plasminogen to cultured human endothelial cells   总被引:26,自引:0,他引:26  
Endothelial cells are known to release the two major forms of plasminogen activator, tissue plasminogen activator (TPA) and urokinase. We have previously demonstrated that plasminogen (PLG) immobilized on various surfaces forms a substrate for efficient conversion to plasmin by TPA (Silverstein, R. L., Nachman, R. L., Leung, L. L. K., and Harpel, P. C. (1985) J. Biol. Chem. 260, 10346-10352). We now report the binding of human PLG to cultured human umbilical vein endothelial cell (HUVEC) monolayers, utilizing a newly devised cell monolayer enzyme-linked immunosorbent assay system. PLG binding to HUVEC was concentration dependent and saturable at physiologic PLG concentration (2 microM). Binding of PLG was 70-80% inhibited by 10 mM epsilon-aminocaproic acid, suggesting that it is largely mediated by the lysine-binding sites of PLG. PLG bound at an intermediate level to human fibroblasts, poorly to human smooth muscle cells, and not at all to bovine smooth muscle or bovine endothelial cells; unrelated proteins such as human albumin and IgG failed to bind HUVEC. PLG binding to HUVEC was rapid, reaching a steady state within 20 min, and quickly reversible. 125I-PLG bound to HUVEC with an estimated Kd of 310 +/- 235 nM (S.E.); each cell contained 1,400,000 +/- 1,000,000 (S.E.) binding sites. Functional studies demonstrated that HUVEC-bound PLG is activatable by TPA according to Michaelis-Menten kinetics (Km, 5.9 nM). Importantly, surface-bound PLG was activated with a 12.7-fold greater catalytic efficiency than fluid phase PLG. These results indicate that PLG binds to HUVEC in a specific and functional manner. Binding of PLG to endothelial cells may play a pivotal role in modulating thrombotic events at the vessel surface.  相似文献   

20.
Recently, we have shown that plasminogen activators (PAs) of both types, urokinase-type (uPA) as well as tissue-type (tPA), are involved in the in vitro invasiveness of human melanoma cells. The present study is focused on the generation and importance of cell surface-bound plasmin in this process. The human melanoma cell lines MelJuso and MeWo expressed plasminogen binding sites on the cell surface. Plasminogen binding was saturable and not species-specific, since human and bovine plasminogen bound to the cells with comparable efficiency. The activation of the proenzyme plasminogen bound on MelJuso cells, which expressed surface-associated uPA activity, occurred almost synchronously with binding to the cell surface. Removal of cell-associated uPA considerably reduced plasmin generation on these cells. In contrast, plasminogen activation on MeWo cells, which secreted tPA into the culture supernatant and which were devoid of surface-associated PA activity, was by far less effective. The efficiency of the activation process could be increased by addition of exogenous tPA. With both cell lines, plasmin generation on the cell surface was suppressed by inhibitory monoclonal antibodies specific for the respective PA type. Selective inhibition of cell surface-associated plasmin by preincubating the cells with an inhibitory monoclonal antibody or with aprotinin, as well as removal of plasmin from the cell surface, led to a significant decrease in cellular invasiveness of both cell lines into various biological substrates such as fibrin gel, the basement membrane extract Matrigel, or intact extracellular matrix. Both cell lines were able to penetrate an intact cell layer of the human keratinocyte line HaCaT, a process, which also proved to be dependent on cell-associated plasmin. In conclusion, these data provide evidence that plasminogen activation associated with the surface of human melanoma cells is catalyzed much more efficiently by cell-associated uPA (MelJuso) than by secreted tPA (MeWo). Cell-associated plasmin, which is protected from inactivation by serum inhibitors, represents the essential component of the proteolytic cascade of plasminogen activation during in vitro invasiveness of human melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号