首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently demonstrated that STAT5 can induce a variety of biological functions in mouse IL-3-dependent Ba/F3 cells; STAT5-induced expression of pim-1, p21(WAF/Cip1), and suppressor of cytokine signaling-1/STAT-induced STAT inhibitor-1/Janus kinase binding protein is responsible for induction of proliferation, differentiation, and apoptosis, respectively. In the present study, using a constitutively active STAT5A (STAT5A1*6), we show that STAT5 induces macrophage differentiation of mouse leukemic M1 cells through a distinct mechanism, autocrine production of IL-6. The supernatant of STAT5A1*6-transduced cells contained sufficient concentrations of IL-6 to induce macrophage differentiation of parental M1 cells, and STAT3 was phosphorylated on their tyrosine residues in these cells. Treatment of the cells with anti-IL-6 blocking Abs profoundly inhibited the differentiation. We also found that the STAT5A1*6 transactivated the IL-6 promoter, which was mediated by the enhanced binding of NF-kappaB p65 (RelA) to the promoter region of IL-6. These findings indicate that STAT5A cooperates with Rel/NF-kappaB to induce production of IL-6, thereby inducing macrophage differentiation of M1 cells in an autocrine manner. In summary, we have shown a novel mechanism by which STAT5 induces its pleiotropic functions. Cytokines  相似文献   

2.
Interleukin-9 (IL-9) activates three distinct STAT proteins: STAT1, STAT3, and STAT5. This process depends on one tyrosine of the IL-9 receptor, which is necessary for proliferation, gene induction, and inhibition of apoptosis induced by glucocorticoids. By introduction of point mutations in amino acids surrounding this tyrosine, we obtained receptors that activated either STAT5 alone or both STAT1 and STAT3, thus providing us with the possibility to study the respective roles of these factors in the biological activities of IL-9. Both mutant receptors were able to prevent apoptosis, but only the mutant that activated STAT1 and STAT3 was able to support induction of granzyme A and L-selectin. In line with these results, constitutively activated STAT5 blocked glucocorticoid-induced apoptosis. In Ba/F3 cells, significant proliferation and pim-1 induction were observed with both STAT-restricted mutants, though proliferation was lower than with the wild-type receptor. These results suggest that survival and cell growth are redundantly controlled by multiple STAT factors, whereas differentiation gene induction is more specifically correlated with individual STAT activation by IL-9.  相似文献   

3.
4.
p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation.  相似文献   

5.
The cytokine-inducible SH2 protein-3 (CIS3/SOCS-3/SSI-3) has been shown to inhibit the JAK/STAT pathway and act as a negative regulator of fetal liver erythropoiesis. Here, we studied the molecular mechanisms by which CIS3 regulates the erythropoietin (EPO) receptor (EPOR) signaling in erythroid progenitors and Ba/F3 cells expressing the EPOR (BF-ER). CIS3 binds directly to the EPOR as well as JAK2 and inhibits EPO-dependent proliferation and STAT5 activation. We have identified the region containing Tyr(401) in the cytoplasmic domain of the EPOR as a direct binding site for CIS3. Deletion of the Tyr(401) region of the EPOR reduced the inhibitory effect of CIS3, suggesting that binding of CIS3 to the EPOR augmented the negative effect of CIS3. Both N- and C-terminal regions adjacent to the SH2 domain of CIS3 were necessary for binding to EPOR and JAK2. In the N-terminal region of CIS3, the amino acid Gly(45) was critical for binding to the EPOR but not to JAK2, while Leu(22) was critical for binding to JAK2. The mutation of G45A partially reduced ability of CIS3 to inhibit EPO-dependent proliferation and STAT5 activation, while L22D mutant CIS3 was completely unable to suppress EPOR signaling. Moreover, overexpression of STAT5, which also binds to Tyr(401), reduced the binding of CIS3 to the EPOR, and the inhibitory effect of CIS3 against EPO signaling, while it did not affect JAB/SOCS-1/SSI-1. These data demonstrate that binding of CIS3 to the EPOR augments the inhibitory effect of CIS3. CIS3 binding to both EPOR and JAK2 may explain a specific regulatory role of CIS3 in erythropoiesis.  相似文献   

6.
Previous experiments have shown that STAT-induced STAT inhibitor-1 (SSI-1; also named suppressors of cytokine signaling-1 (SOCS-1) or Janus kinase binding protein) is predominantly expressed in lymphoid organs and functions in vitro as a negative regulator of cytokine signaling. To determine the function of SOCS-1 in vivo, we generated SSI-1 transgenic mice using the lck proximal promoter that drives transgene expression in T cell lineage. In thymocytes expressing SSI-1 transgene, tyrosine phosphorylation of STATs in response to cytokines such as IFN-gamma, IL-6, and IL-7 was inhibited, suggesting that SSI-1 suppresses cytokine signaling in primary lymphocytes. In addition, lck-SSI-1 transgenic mice showed a reduction in the number of thymocytes as a result of the developmental blocking during triple-negative stage. They also exhibited a relative increase in the percentage of CD4+ T cells, a reduction in the number of gammadelta T cells, as well as the spontaneous activation and increased apoptosis of peripheral T cells. Thus, enforced expression of SSI-1 disturbs the development of thymocytes and the homeostasis of peripheral T cells. All these features of lck-SSI-1 transgenic mice strikingly resemble the phenotype of mice lacking common gamma-chain or Janus kinase-3, suggesting that transgene-derived SSI-1 inhibits the functions of common gamma-chain-using cytokines. Taken together, these results suggest that SSI-1 can also inhibit a wide variety of cytokines in vivo.  相似文献   

7.
8.
The majority of polycythemia vera (PV) patients harbor a unique somatic mutation (V617F) in the pseudokinase domain of JAK2, which leads to constitutive signaling. Here we show that the homologous mutations in JAK1 (V658F) and in Tyk2 (V678F) lead to constitutive activation of these kinases. Their expression induces autonomous growth of cytokine-dependent cells and constitutive activation of STAT5, STAT3, mitogen-activated protein kinase, and Akt signaling in Ba/F3 cells. The mutant JAKs exhibit constitutive signaling also when expressed in fibrosarcoma cells deficient in JAK proteins. Expression of the JAK2 V617F mutant renders Ba/F3 cells hypersensitive to insulin-like growth factor 1 (IGF1), which is a hallmark of PV erythroid progenitors. Upon selection of Ba/F3 cells for autonomous growth induced by the JAK2 V617F mutant, cells respond to IGF1 by activating STAT5, STAT3, Erk1/2, and Akt on top of the constitutive activation characteristic of autonomous cells. The synergic effect on proliferation and STAT activation appears specific to the JAK2 V617F mutant. Our results show that the homologous V617F mutation induces activation of JAK1 and Tyk2, suggesting a common mechanism of activation for the JAK1, JAK2, and Tyk2 mutants. JAK3 is not activated by the homologous mutation M592F, despite the presence of the conserved GVC preceding sequence. We suggest that mutations in the JAK1 and Tyk2 genes may be identified as initial molecular defects in human cancers and autoimmune diseases.  相似文献   

9.
JAK1 and JAK2 are tyrosine kinases involved in the regulation of cell proliferation, differentiation, and survival. These proteins may play a key role in mediating the effects of the cytokine IL-3 on hematopoietic cells. IL-3 induces tyrosine phosphorylation of both JAK1 and JAK2. However, it is not clear whether the activation of JAK1, JAK2, or both is sufficient to confer factor-independent growth in IL-3 dependent cells. To address this issue, fusion proteins CD16/CD7/JAK (CDJAK), comprised of a CD16 extracellular domain, a CD7 transmembrane domain, and a JAK cytoplasmic region (either a wild-type JAK or a dominant negative mutant of JAK) were constructed. We established several Ba/F3 derivatives that stably overexpress the conditionally active forms of either CDJAK1, CDJAK2, or both these fusion proteins. In this study, the autophosphorylation of CDJAK1 or CDJAK2 was induced by crosslinking with anti-CD16 antibody. We demonstrated that, like their wild-type counterparts, CDJAK1 and CDJAK2 were preassociated with the IL-3 receptor beta and alpha subunits, respectively. Furthermore, the simultaneous activation of both CDJAK1 and CDJAK2 fusion proteins, but not either one alone, led to the tyrosine phosphorylation of the IL-3 receptor beta subunit, the activation of downstream signaling molecules, including STAT5, Akt, and MAPK, and the conferring of factor-independent growth to IL-3-dependent Ba/F3 cells. Coexpression of dominant negative mutants CDJAK1KE or CDJAK2KE with wild type CDJAK2 or CDJAK1, respectively, inhibited these activation activities. These results suggest that JAK1 and JAK2 must work cooperatively and not independently and that their actions are dependent on having normal kinase activity to trigger downstream signals leading to IL-3 independent proliferation and survival of Ba/F3 cells.  相似文献   

10.
We have previously reported that the Huntingtin interacting protein 1 (HIP1) gene is fused to the platelet-derived growth factor beta receptor (PDGFbetaR) gene in a patient with chronic myelomonocytic leukemia. We now show that HIP1/PDGFbetaR oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the murine hematopoietic cell line, Ba/F3, to interleukin-3-independent growth. A kinase-inactive mutant is neither tyrosine-phosphorylated nor able to transform Ba/F3 cells. Oligomerization and kinase activation required the 55-amino acid carboxyl-terminal TALIN homology region but not the leucine zipper domain. Tyrosine phosphorylation of a 130-kDa protein and STAT5 correlates with transformation in cells expressing HIP1/PDGFbetaR and related mutants. A deletion mutant fusion protein that contains only the TALIN homology region of HIP1 fused to PDGFbetaR is incapable of transforming Ba/F3 cells and does not tyrosine-phosphorylate p130 or STAT5, although it is itself constitutively tyrosine-phosphorylated. We have also analyzed cells expressing Tyr --> Phe mutants of HIP1/PDGFbetaR in the known PDGFbetaR SH2 docking sites and report that none of these sites are necessary for STAT5 activation, p130 phosphorylation, or Ba/F3 transformation. The correlation of factor-independent growth of hematopoietic cells with p130 and STAT5 phosphorylation/activation in both the HIP1/PDGFbetaR Tyr --> Phe and deletion mutational variants suggests that both STAT5 and p130 are important for transformation mediated by HIP1/PDGFbetaR.  相似文献   

11.
Cytokines exert biological functions by activating Janus tyrosine kinases (JAKs), and JAK inhibitors JAB (also referred to as SOCS1 and SSI1) and CIS3 (SOCS3) play an essential role in the negative regulation of cytokine signaling. We have found that transgenic (Tg) mice expressing a mutant JAB (F59D-JAB) exhibited a more potent STAT3 activation and a more severe colitis than did wild-type littermates after treatment with dextran sulfate sodium. We now find that there is a prolonged activation of JAKs and STATs in response to a number of cytokines in T cells from Tg mice with lck promoter-driven F59D-JAB. Overexpression of F59D-JAB also sustained activation of JAK2 in Ba/F3 cells. These data suggested that F59D-JAB up-regulated STAT activity by sustaining JAK activation. To elucidate molecular mechanisms related to F59D-JAB, we analyzed the effects of F59D-JAB on the JAK/STAT pathway using the 293 cell transient expression system. We found that the C-terminal SOCS-box played an essential role in augmenting cytokine signaling by F59D-JAB. The SOCS-box interacted with the Elongin BC complex, and this interaction stabilized JAB. F59D-JAB induced destabilization of wild-type JAB, whereas overexpression of Elongin BC canceled this effect. Levels of endogenous JAB and CIS3 in T cells from F59D-JAB Tg-mouse were lower than in wild-type mice. We propose that F59D-JAB destabilizes wild-type, endogenous JAB and CIS3 by chelating the Elongin BC complex, thereby sustaining JAK activation.  相似文献   

12.
The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2   总被引:16,自引:0,他引:16  
Fusion of the TEL gene on 12p13 to the JAK2 tyrosine kinase gene on 9p24 has been found in human leukemia. TEL-mediated oligomerization of JAK2 results in constitutive activation of the tyrosine kinase (JH1) domain and confers cytokine-independent proliferation on interleukin-3-dependent Ba/F3 cells. Forced expression of the JAK inhibitor gene SOCS1/JAB/SSI-1 induced apoptosis of TEL-JAK2-transformed Ba/F3 cells. This suppression of TEL-JAK2 activity was dependent on SOCS box-mediated proteasomal degradation of TEL-JAK2 rather than on kinase inhibition. Degradation of JAK2 depended on its phosphorylation and its high affinity binding with SOCS1 through the kinase inhibitory region and the SH2 domain. It has been demonstrated that von Hippel-Lindau disease (VHL) tumor-suppressor gene product possesses the SOCS box that forms a complex with Elongin B and C and Cullin-2, and it functions as a ubiquitin ligase. The SOCS box of SOCS1/JAB has also been shown to interact with Elongins; however, ubiquitin ligase activity has not been demonstrated. We found that the SOCS box interacted with Cullin-2 and promoted ubiquitination of TEL-JAK2. Furthermore, overexpression of dominant negative Cullin-2 suppressed SOCS1-dependent TEL-JAK2 degradation. Our study demonstrates the substrate-specific E3 ubiquitin-ligase-like activity of SOCS1 for activated JAK2 and may provide a novel strategy for the suppression of oncogenic tyrosine kinases.  相似文献   

13.
14.
15.
After detachment from the stromal cells, hematopoietic stem cells are thought to differentiate to the cytokine-dependent stages where their growth and differentiation are promoted by these cytokines. To examine the stromal regulation of hematopoietic stem cells, we previously established a primitive hematopoietic stem-like cell line, THS119, whose growth was dependent on the bone marrow stromal cell line, TBR59, and from which IL-3- (THS119/IL-3) or IL-7- (THS119/IL-7) dependent cell lines were then generated. Using these cell lines, we examined the difference in signals mediated by the stromal cells and cytokines. The cytokine-dependent cell lines (THS119/IL-3 and THS119/IL-7) showed induction of STAT5 phosphorylation and target genes for STAT5 such as CIS, pim-1, p21 and bcl-xL upon addition of IL-3 or IL-7. IL-3 or IL-7 also induced STAT5 phosphorylation and STAT5 target genes of the stromal cell-dependent cell line, THS119, in the absence of stromal cells at levels similar to the cytokine-dependent cell lines. However, quite interestingly, TBR59 stromal cells could not induce STAT5 phosphorylation of THS119 cells, although they did induce STAT5 target genes in THS119 cells. In addition, the mRNAs for STAT5 target genes in THS119 cells on the stromal cells seemed to be more stable than those in the cytokine-dependent cell lines. Expression of the antiapoptotic genes bcl-2 and bcl-xL was higher in the stromal cell-dependent cell line than in the cytokine-dependent cell lines. These results suggested that stromal cells and cytokines may provide different signals for growth and differentiation of the hematopoietic cells.  相似文献   

16.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

17.
18.
19.
20.
During spermatogenesis, the radiosensitivity of testicular cells changes considerably. To investigate the molecular mechanism underlying these radiosensitivity differences, p21(Cip1/WAF1) expression was studied before and after irradiation in the adult mouse testis. P21(Cip1/WAF1) is a cyclin-dependent kinase inhibitor (CDI) and has a role in the G1/S checkpoint and differentiation. P21(Cip1/WAF1) expression was observed in the normal testis, using Western blotting analysis. After a dose of 4 Gy, but not after 0.3 Gy, an increase in p21(Cip1/WAF1) expression could be determined in whole testis lysates. To investigate which germ cells are involved in p21(Cip1/WAF1) protein expression, immunohistochemical analysis was performed on irradiated testis. In the normal testis a weak staining for p21(Cip1/WAF1) was found in pachytene spermatocytes in epithelial stage V up to step 5 spermatids. A dose of 4 Gy of X-irradiation resulted in a transient increase of p21(Cip1/WAF1) staining in these cells with a maximum at 6 hr post irradiation, despite the fact that the irradiation did not induce an increase in the number of apoptotic spermatocytes. When a dose of 0.3 Gy was given, no increase in p21(Cip1/WAF1) staining was observed. Using the TUNEL technique, a 10-fold increase in apoptotic spermatogonia was found after a dose of 4 Gy. However, no staining for p21(Cip1/WAF1) was observed in spermatogonia, suggesting that these cells do not undergo a p21(Cip1/WAF1)-induced G1 arrest prior to DNA repair or apoptosis. These data imply that p21(Cip1/WAF1) is a factor which could be important during the meiotic prophase in spermatocytes and repair mechanisms in these cells, but not in spermatogonial cell cycle delay or apoptosis induction. Mol. Reprod. Dev. 47:240–247, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号