首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mesenchymal stromal cells (MSCs) can effectively contribute to tissue regeneration inside the inflammatory microenvironment mostly through modulating immune responses. MSC-derived extracellular vesicles (MSC-EVs) display immunoregulatory functions similar to parent cells. Interactions between MSC-EVs and immune cells make them an ideal therapeutic candidate for infectious, inflammatory, and autoimmune diseases. These properties of MSC-EVs have encouraged researchers to perform extensive studies on multiple factors that mediate MSC-EVs immunomodulatory effects. Investigation of proteins involved in the complex interplay of MSC-EVs and immune cells may help us to better understand their functions. Here, we performed a comprehensive proteomic analysis of MSC-EVs that was previously reported by ExoCarta database. A total of 938 proteins were identified as MSC-EV proteome using quantitative proteomics techniques. Kyoto Encyclopedia of Genes and Genomes analysis demonstrates that ECM–receptor interaction, focal adhesion, and disease-specific pathways are enriched in MSC-EVs. By detail analysis of proteins presence in immune system process, we found that expression of some cytokines, chemokines, and chemokine receptors such as IL10, HGF, LIF, CCL2, VEGFC, and CCL20, which leads to migration of MSC-EVs to injured sites, suppression of inflammation and promotion of regeneration in inflammatory and autoimmune diseases. Also, some chemoattractant proteins such as CXCL2, CXCL8, CXCL16, DEFA1, HERC5, and IFITM2 were found in MSC-EV proteome. They may actively recruit immune cells to the proximity of MSC or MSC-EVs, may result in boosting immune response under specific circumstances, and may have protective role in infectious diseases. In this review, we summarize available information about immunomodulation of MSC-EVs with particular emphasis on their proteomics analysis.  相似文献   

2.
Cytokine-Induced Inflammation in the Central Nervous System Revisited   总被引:6,自引:0,他引:6  
Cytokines play an essential role as mediators of the immune response. They usually function as part of a network of interactive signals that either activate, enhance, or inhibit the ensuing reaction. An important contribution of this cytokine cascade is the induction of an inflammatory response that recruits and activates subsets of leukocytes that function as effector cells in the response to the sensitizing antigen. Proinflammatory cytokines activate endothelial cells (EC) to express adhesion molecules and induce the release of members of the chemokine family, thus focusing and directing the inflammatory response to sites of antigen recognition. However, the vasculature of the central nervous system (CNS) is highly specialized and restricts the access of components of the immune system to the CNS compartment. In this review, we address the question as to whether endothelial cells in the CNS respond differently to specific cytokines known to induce either a proinflammatory effect or a regulatory effect in systemic vascular beds.  相似文献   

3.
Experimental allergic encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS) which has many clinical and pathological features in common with multiple sclerosis (MS). Comparison of the histopathology of EAE and MS reveals a close similarity suggesting that these two diseases share common pathogenetic mechanisms. Immunologic processes are widely accepted to contribute to the initiation and continuation of the diseases and recent studies have indicated that microglia, astrocytes and the infiltrating immune cells have separate roles in the pathogenesis of the MS lesion (1,2). The role of cytokines as important regulatory elements in these immune processes has been well established in EAE and the presence of cytokines in cells at the edge of MS lesions has also been observed (3–7). However, the role of chemokines in the initial inflammatory process as well as in the unique demyelinating event associated with MS and EAE has only recently been examined. A few studies have detected the transient presence of selected chemokines at the earliest sign of leukocyte infiltration of CNS tissue and have suggested astrocytes as their cellular source (8–10). Based on these studies, chemokines have been postulated as a promising target for future therapy of CNS inflammation. This review summarizes the events that occur during the inflammatory process in EAE and discusses the roles of cytokine and chemokine expression by the resident and infiltrating cells participating in the process. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

4.
Recent observations suggest that besides their role in the immune system, chemokines have important functions in the brain. There is a great line of evidence to suggest that chemokines are a unique class of neurotransmitters/neuromodulators, which regulate many biological aspects as diverse as neurodevelopment, neuroinflammation and synaptic transmission. In physiopathological conditions, many chemokines are synthesized in activated astrocytes and microglial cells, suggesting their involvement in brain defense mechanisms. However, when evoking chemokine functions in the nervous system, it is important to make a distinction between resting conditions and various pathological states including inflammatory diseases, autoimmune or neurodegenerative disorders in which chemokine functions have been extensively studied. We illustrate here the emergent concept of the neuromodulatory/neurotransmitter activities of neurochemokines and their potential role as a regulatory alarm system and as a group of messenger molecules for the crosstalk between neurons and cells from their surrounding microenvironment. In this deliberately challenging review, we provide novel hypotheses on the role of these subtle messenger molecules in brain functions leading to the evidence that previous dogmas concerning chemokines should be reconsidered.  相似文献   

5.
Studies of notch signaling in immune cells have uncovered critical roles for this pathway both during the differentiation and effector function phases of immune responses. Cells of the myeloid lineage, including macrophages and dendritic cells, function as key components of innate immune defense against infection and, by acting as antigen presenting cells, can instruct cells of the adaptive immune response, specifically CD4 and CD8 T cells. Tight regulation of this functional interaction is needed to ensure a well-balanced immune response and its dysregulation may indirectly or directly cause the tissue damage characteristic of autoimmune diseases. In this review, the focus will be placed on those recent findings which support a role for notch signaling in inflammatory responses mediated by macrophages and other myeloid lineage cells, as well as peripheral T cells, and their relevance to inflammatory and autoimmne diseases.  相似文献   

6.
Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.  相似文献   

7.
The human immune system is a tightly regulated network that protects the host from disease. An important aspect of this is the balance between pro‐inflammatory Th17 cells and anti‐inflammatory T regulatory (Treg) cells in maintaining immune homeostasis. Foxp3+ Treg are critical for sustaining immune tolerance through IL‐10 and transforming growth factor‐β while related orphan receptor‐γt+ Th17 cells promote immunopathology and auto‐inflammatory diseases through the actions of IL‐17A, IL‐21 and IL‐22. Therefore, imbalance between Treg and Th17 cells can result in serious pathology in many organs and tissues. Recently, certain IL‐17‐producing cells have been found to be protective against infectious disease, particularly in relation to extracellular bacteria such Streptococcus pneumoniae; a number of other novel IL‐17‐secreting cell populations have also been reported to protect against a variety of other pathogens. In this mini‐review, the dual roles of Treg and Th17 cells are discussed in the context of autoimmunity and infections, highlighting recent advances in the field. Development of novel strategies specifically designed to target these critical immune response pathways will become increasingly important in maintenance of human health.  相似文献   

8.
Inflammation is the first line of defense against injury and infection and works both by controlling the ongoing pathological processes and by promoting neuroprotection and regeneration. When the inflammatory response is hyper activated, it plays a pivotal role in the pathophysiology of many neurological diseases, as it can also be a source of additional injury to host cells. Since neurons lack the ability to divide and recover poorly from injury, they are extremely vulnerable to auto destructive immune and inflammatory processes, and this side effect is fundamental to the outcome of neurological diseases. Inappropriate immune responses are responsible for diseases such as Multiple Sclerosis (MS), Alzheimer's disease (AD) or Parkinson's disease (PD) and for the increased disability after brain trauma or stroke. However, in certain circumstances immune responses in the brain might have a neuroprotective effect, possibly mediated by the release of trophic factors from inflammatory and/or glial cells. The nerve growth factor (NGF) was the first neurotrophin discovered for its stimulatory effect on differentiation, survival, and growth of neurons in peripheral and central nervous system. This factor can protect axons and myelin from inflammatory damage and also can modulate the immune system, reducing the enhanced excitotoxicity during acute inflammatory activation. Therefore, because its neuroprotective activity and immunomodulatory effects, NGF may represent a new therapeutic approach for the treatment of numerous brain disorders.  相似文献   

9.
The various research periods leading to the development of paraspecific vaccines are described. Paraspecific vaccines are new, pyrogen-free, non-toxic preparations that contain non-immunising antigens and can be used to generate endogenic protective, non-antigen specific mechanisms in the sense of paramunization in humans and animals. They consist of highly attenuated and inactivated (0.05% Betapropiolactone) virus strains of various poxvirus genera. They activate the T helper cells and cellular elements of the paraspecific (innate) immune system and initiate the associated production and release of cytokines (cytokine cascade) with the goal of eliminating dysfunctions of the immune systems, rapidly enhancing the individual's non-pathogen- and non-antigen-specific defences and exerting a regulatory effect on the interplay between the immune, hormone, nervous and vascular systems (signal-transduction mediators). They can be used systemically (intramuscularly) and locally (mucous membranes, skin). Immunization with paraspecific vaccines does not lead to postvaccinal complications and can be carried out as often as necessary, even for a number of years. They are compatible with conventional medicines and conventional specific vaccines. Closely linked protein complexes in the envelopes of the virus particles are responsible for their efficacy, some of those envelope protein complexes possess the properties of weak super antigens. Paraspecific vaccines have proved effective in combating viral infections, in particular herpes and hepatitis B and C infections, and chronic inflammatory diseases, and also as adjuvant therapy for tumours, for curing stress-related disturbances and dysfunctions of the immune system.  相似文献   

10.
The genetic heritage for decades has been considered to respond only to gene promoters or suppressors, with specific roles for oncogenes or tumor-suppressor genes. Epigenetics is progressively attracting increasing interest because it has demonstrated the capacity of these regulatory processes to regulate the gene expression without modifying gene sequence. Several factors may influence epigenetics, such as lifestyles including food selection. A role for physical exercise is emerging in the epigenetic regulation of gene expression. In this review, we resume physiological and pathological implications of epigenetic modification induced by the physical activity (PA). Inflammation and cancer mechanisms, immune system, central nervous system, and the aging process receive benefits due to PA through epigenetic mechanisms. Thus, the modulation of epigenetic processes by physical exercise positively influences prevention, development, and the course of inflammatory and cancer diseases, as well as neurodegenerative illnesses. This growing field of studies gives rise to a new role for PA as an option in prevention strategies and to integrate pharmacological therapeutic treatments.  相似文献   

11.
ObjectiveTo construct a regulatory network involved in acute lung injury, so as to provide a new theoretical basis and research ideas for studying the relationship between inflammatory factors and immune proteins to collectively regulate the occurrence of acute lung injury.MethodBy using Meta-analysis, GO, KEGG and other methods notarized and constructed the regulatory network pathways of cytokine cascade and lung injury induced by LPS.ResultsThe result of Meta-analysis showed that the correlation between CD14, TNF-α, IL-6 gene and acute lung injury was statistically significant. GO analysis and KEGG analysis showed that acute lung injury contained CD14, TNF-α, IL-6 and other involved factors in the induced process of LPS, these inflammatory factors and immune proteins jointly regulate the process of disease development.ConclusionCD14 receptor is an important receptor involved in mediating LPS-activated cells, and is a high-affinity LPS receptor. LPS stimulates inflammatory effector cells to bind to LPS receptor- CD14 to activate intracellular signal cascade. Direct or indirect involvement of pathogenic factors enable cytokine caused by induction form a particularly complex network of cytokine regulatory pathways, of which the inflammatory factors TNF-α and IL-6 are simultaneously involved in LPS-mediated and CD14-mediated cytokine cascades.  相似文献   

12.
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T‐cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti‐inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti‐inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti‐inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro‐inflammatory Th1 and Th17 cells, and indirectly decrease Th cell‐mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.  相似文献   

13.
14.
动脉粥样硬化(atherosclerosis,AS)是导致心血管疾病的主要病理生理基础,现在被认为是一种慢性炎症性疾病.实验和临床证据表明适应性免疫应答可加速或抑制AS.适应性免疫细胞包括T细胞和B细胞,其通过分泌不同的细胞因子或抗体发挥促炎或抗炎作用,某些T细胞和B细胞亚型在AS进程中的作用仍存在争议,Th17和Treg细胞可根据微环境改变表型,提示T细胞可能具有可塑性.此外,脂质代谢和适应性免疫系统之间也存在复杂的相互作用.最近卡那单抗抗炎血栓形成结果研究为治疗AS的抗炎症策略提供了关键支持,针对免疫系统的免疫调节或疫苗接种也是治疗AS有希望的途径.本文就近年来适应性免疫应答在AS中的研究进展作一综述,并展望其作为诊断和防治心血管疾病靶点的未来前景.  相似文献   

15.
T淋巴细胞抑制急性感染的炎症反应   总被引:1,自引:0,他引:1  
炎症反应是机体针对损伤因子所产生的防御反应并伴随着红、热、肿、痛的局部临床特征.炎症反应是由多种细胞和细胞因子共同参与的复杂过程,天然免疫细胞(包括吞噬细胞、自然杀伤细胞、巨噬细胞等)是起始和推进炎症反应的重要效应细胞,而获得性免疫细胞如T细胞不仅参与后期炎症反应的发生同时还具有调节早期炎症反应的重要功能.炎症反应本身有利于清除消灭致病因子,液体的渗出可稀释毒素,吞噬搬运坏死组织以利于再生和修复,使致病因子局限在炎症部位而不致蔓延全身.另一方面,过激和长期的炎症反应又会对机体造成损伤.因此,深入研究炎症反应的机制可为治疗炎症所引起的疾病提供新的思路.  相似文献   

16.
Neural stem cells in inflammatory CNS diseases: mechanisms and therapy   总被引:8,自引:0,他引:8  
Autoimmune inflammatory diseases of the central nervous system (CNS) are highly complex in their interaction of different cell populations. The main therapy focus in the last years has been the inhibition of the immune system. Recent progress has shown that endogenous as well as transplanted neural stem cells might positively influence the outcome of such diseases. In this review, we discuss the current concept of the underlying pathogenesis with a specific focus on local CNS cells and potential treatment options.  相似文献   

17.
The endocrine and immune systems are interrelated via a bidirectional network in which hormones affect immune function and, in turn, immune responses are reflected in neuroendocrine changes. This bidirectional communication is possible because both systems share a common "chemical language" that results from a sharing of common ligands (hormones and cytokines) and their specific receptors. Cytokines are important partners in this crosstalk. They play a role in modulating the hypothalamo-pituitary-adrenal (HPA) axis responses at all three levels: the hypothalamus, the pituitary gland and the adrenals. Acute effects of cytokines are produced at the central nervous system level, particularly the hypothalamus, whereas pituitary and adrenal actions are slower and are probably involved during prolonged exposure to cytokines such as during chronic inflammation or infection. Several mechanisms have been proposed by which peripheral cytokines may gain access to the brain. They include an active transport through the blood-brain barrier, a passage at the circumventricular organ level, as well as a neuronal pathway through the vagal nerve. The immune-neuroendocrine interactions are involved in numerous physiological and pathophysiological conditions and the interactions with the HPA axis may represent a mechanism through which the immune system, by stimulating the production of glucocorticoids, avoids an overshoot of inflammatory response. They may also be involved in the state of hypogonadism, of hypothyroidism and growth inhibition which can occur during inflammatory and infectious diseases. The crosstalk between the immune and endocrine systems is important to homeostasis, since the interactions can produce various appropriate adaptative responses when homeostasis is threatened.  相似文献   

18.
An increasing number of studies have implicated that the activation of innate immune system and inflammatory mechanisms are of importance in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms in response to pathogens or tissue injury, which is performed via germ-line encoded pattern-recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) or dangers-associated molecular patterns (DAMPs). Intracellular pathways linking immune and inflammatory response to ion channel expression and function have been recently identified. Among ion channels, transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes. In this review, we summarize current knowledge about classifications, functions, and interactions of TRP channels and PRRs, which may provide new insights into their roles in the pathogenesis of inflammatory diseases.  相似文献   

19.
Haskó  György 《Neurochemical research》2001,26(8-9):1039-1044
The sympathetic nervous system plays a central role in establishing communication between the central nervous system and the immune system during inflammation. Inflammation activates the sympathetic nervous system, which causes release of the transmitters of the sympathetic nerv-ous system in the periphery. The transmitters of the sympathetic nervous system are the cate-cholamines noradrenaline and adrenaline and the purines ATP, adenosine, and inosine. Once these transmitters are released, they stimulate both presynaptic receptors on nerve terminals and post-synaptic receptors on immune cells. The receptors that are sensitive to catecholamines are termed adrenoceptors, whereas the receptors that bind purines are called purinoceptors. Stimulation of the presynaptic receptors exerts an autoregulatory effect on the release of transmitters. Ligation of the postsynaptic receptors on inflammatory cells modulates the inflammatory ac-tivities of these cells. The present review summarizes some of the most important aspects of the current state of knowledge about the interactions between the sympathetic nervous system and the immune system during inflammation with a special emphasis on the role of adreno and purinoceptors.  相似文献   

20.
Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimer's disease and Parkinson's disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF‐α) and interleukin 6 (IL‐6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin‐target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron‐induced oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号