首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Biological invasions are rapid evolutionary events in which populations are usually subject to a founder event during introduction followed by rapid adaptation to the new environment. Molecular tools and Bayesian approaches have shown their utility in exploring different evolutionary scenarios regarding the invasion routes of introduced species. We examined the situation for the tobacco aphid, Myzus persicae nicotianae, a recently introduced aphid species in Chile. Using seven microsatellite loci and approximate Bayesian computation, we studied populations of the tobacco aphid sampled from several American and European countries, identifying the most likely source populations and tracking the route of introduction to Chile. Our population genetic data are consistent with available historical information, pointing to an introduction route of the tobacco aphid from Europe and/or from other putative populations (e.g. Asia) with subsequent introduction through North America to South America. Evidence of multiple introductions to North America from different genetic pools, with successive loss of genetic diversity from Europe towards North America and a strong bottleneck during the southward introduction to South America, was also found. Additionally, we examined the special case of a widespread multilocus genotype that was found in all American countries examined. This case provides further evidence for the existence of highly successful genotypes or 'superclones' in asexually reproducing organisms.  相似文献   

2.
The colonization of America by Drosophila subobscura has been a unique exper iment in nature that has allowed us to explore the effects of evolution on a continental scale. To analyze this evolutionary event, nucleotide sequences of the Odh (Octanol dehydrogenase) gene were obtained for 43 lethal chromosomal lines from colonizing populations of North America and 5 from South America, in addition to 5 chromosomal lines from Europe with different viabilities and 2 from laboratory marker stocks. Since 10 different Odh haplotypes were found in America, the minimum number of colonizers would be 5 (or 3 mated females). Only one Odh haplotype was found in American O(5) inversions confirming that only one copy of this inversion was included among the sample of colonizers. The same Odh haplotypes were detected in association with the same chromosomal arrangements and with identical lethal genes in both North and South America indicating that exactly the same chromosome types reached both hemispheres. These observations indicate that the two continental colonizations are not independent. They are derived from the same colonization event. The population from which the colonization started should contain the O(5) inversion, a non-negligible frequency of the O(3+4+7) arrangement and all other arrangements found in America. So far the only populations that fulfill all these requirements are those from Greece, indicating that these populations can be considered good candidates as a starting point for an in depth analysis of the origin of the American colonization by D. subobscura.  相似文献   

3.
Abstract.— Drosophila subobscura was first identified in North America in the early 1980s, and a newer D. subobscura population in Utah appears to have been established more than 10 years later. In this study, we use nuclear microsatellite allele frequencies, mitochondrial restriction fragment length polymorphism (RFLP) allele frequencies, and computer simulations to investigate possible scenarios of how this species has spread across North America. Our method develops a 95% confidence interval for the maximum and minimum number of founders that could have colonized the new population given various scenarios for spread. Unlike many other methods, it may be applied to nonequilibrium source populations given certain conditions. We find that observed allele frequency differences between newer and older D. subobscura populations are consistent with very few inseminated females being transported east from the coast in a single step or with larger numbers of colonizers invading after several intermediate steps. They are not consistent with a large, panmictic population of D. subobscura colonizing Utah in a single step.  相似文献   

4.
Introductions of biological control agents may cause bottlenecks in population size despite efforts to avoid them. We examined the population genetics of Aphidius ervi (Hymenoptera: Braconidae), a parasitoid that was introduced to North America from Western Europe in 1959 to control pea aphids. To explore the phylogeographical relationships of A. ervi we sequenced 1249 bp of mitochondrial DNA (mtDNA) from 27 individuals from the native range and 51 individuals from the introduced range. Most individuals from Western Europe, the Middle East and North America shared one of two common haplotypes, consistent with the known history of the introduction. However, some A. ervi from the Pacific Northwest have a haplotype that is most similar to haplotypes found in Japan, raising the possibility of a second accidental introduction. To examine population structure and assess whether a bottleneck occurred upon introduction to North America, we assayed variation at 5 microsatellite loci in 62 individuals from 2 native populations and 230 individuals from 6 introduced populations. Introduced samples had fewer rare alleles than native samples (F1,34 = 13.5, P = 0.0008), but heterozygosity did not differ significantly. These results suggest that a mild bottleneck occurred in spite of the introduction of over 1000 individuals. Using a hierarchical Bayesian approach, the founding population size was estimated to be 245 individuals. amova showed significant genetic differentiation between the European and North American samples, and a Bayesian assignment approach clustered individuals into four groups, with most European individuals in one group and most North American individuals in the other three. These results highlight that genetic changes are associated with founder events in rapidly growing natural populations, even when the founding population size is relatively large.  相似文献   

5.
Balakirev ES  Ayala FJ 《Genetics》2003,165(4):1901-1914
We have investigated nucleotide polymorphism in the Est-6 gene region in four samples of Drosophila melanogaster derived from natural populations of East Africa (Zimbabwe), Europe (Spain), North America (California), and South America (Venezuela). There are two divergent sequence types in the North and South American samples, which are not perfectly (North America) or not at all (South America) associated with the Est-6 allozyme variation. Less pronounced or no sequence dimorphism occurs in the European and African samples, respectively. The level of nucleotide diversity is highest in the African sample, lower (and similar to each other) in the samples from Europe and North America, and lowest in the sample from South America. The extent of linkage disequilibrium is low in Africa (1.23% significant associations), but much higher in non-African populations (22.59, 21.45, and 37.68% in Europe, North America, and South America, respectively). Tests of neutrality with recombination are significant in non-African samples but not significant in the African sample. We propose that demographic history (bottleneck and admixture of genetically different populations) is the major factor shaping the nucleotide patterns in the Est-6 gene region. However, positive selection modifies the pattern: balanced selection creates elevated levels of nucleotide variation around functionally important (target) polymorphic sites (RsaI-/RsaI+ in the promoter region and F/S in the coding region) in both African and non-African samples; and directional selection, acting during the geographic expansion phase of D. melanogaster, creates an excess of very similar sequences (RsaI- and S allelic lineages, in the promoter and coding regions, respectively) in the non-African samples.  相似文献   

6.
Drosophila subobscura is geographically widespread in the Old World. Around the late 1970s, it was accidentally introduced into both South and North America, where it spread rapidly over broad latitudinal ranges. This invading species offers opportunities to study the speed and predictability of trait evolution on a geographic scale. One trait of special interest is body size, which shows a strong and positive latitudinal cline in many Drosophila species, including Old World D. subobscura. Surveys made about a decade after the invasion found no evidence of a size cline in either North or South America. However, a survey made in North America about two decades after the invasion showed that a conspicuous size cline had evolved and (for females) was coincident with that for Old World flies. We have now conducted parallel studies on 10 populations (13 degrees of latitude) of flies, collected in Chile in spring 1999. After rearing flies in the laboratory for several generations, we measured wing sizes and compared geographic patterns (versus latitude or temperature) for flies on all three continents. South American females have now evolved a significant latitudinal size cline that is similar in slope to that of Old World and of North American flies. Rates of evolution (haldanes) for females are among the highest ever measured for quantitative traits. In contrast, the size cline is positive but not significant for South or North American males. At any given latitude, South American flies of both sexes are relatively large; this in part reflects the relatively cool climate of coastal Chile. Interestingly, the sections of the wing that generate the size cline for females differ among all three continents. Thus, although the evolution of overall wing size is predictable on a geographic scale (at least for females), the evolution of size of particular wing components is decidedly not.  相似文献   

7.
Species invading new ranges are subject to a series of demographic events that can strongly shape genetic diversity. Describing this demographic history is important for understanding where invasive species come from and how they spread, and is critical to testing hypotheses of postinvasion adaptation. Here, we analyse nuclear and chloroplast genetic diversity to study the invasion history of the widespread colonizing weed, Silene latifolia (Caryophyllaceae). Bayesian clustering and PCA revealed strong population structure in the native range of Europe, and although genotypes from multiple native sources were present in the introduced range of North America, the spatial distribution of genetic variance was dramatically reorganized. Using approximate Bayesian computation (ABC), we compared support for different invasion scenarios, including the number and size of independent introduction events and the amount of admixture occurring between sources of introduced genotypes. Our results supported independent introductions into eastern and western North America, with the latter forming a bridgehead for a secondary invasion into the Great Lakes region of central North America. Despite small estimated founder population sizes, the duration of the demographic bottleneck after the initial introduction appeared extremely short‐lived. This pattern of repeated colonization and rapid expansion has effectively eroded the strong population structure and cytonuclear associations present in Europe, but has retained overall high genetic diversity since invasion. Our results highlight the flexibility of the ABC approach for constructing a narrative of the demographic history of species invasions and provide baseline for future studies of evolutionary changes in introduced S. latifolia populations.  相似文献   

8.
Aim Canada thistle (Cirsium arvense– Cardueae, Asteraceae) is one of the worst invasive plants world‐wide. Native to Eurasia, its unintentional introduction into North America now threatens the native flora and is responsible for enormous agricultural losses. The goals of this study are to: (1) reconstruct the evolutionary history of C. arvense and estimate how often it may have colonized North America, (2) compare the genetic diversity between European and North American populations to detect signs of demographic bottlenecks and/or patterns of population admixture, and (3) conduct bioclimatic comparisons to infer eventual niche shifts following this species’ introduction into North America. Location Europe and North America. Methods A total of 1522 individuals from 58 populations were investigated with six microsatellite markers. Estimates of heterozygosity (HE) and allelic richness (RS) were quantified for each population, and population structure was inferred via analyses of molecular variance (AMOVAs), principal components analyses (PCAs), Mantel tests and Bayesian clustering analyses. Climatic niche spaces were based on 19 bioclimatic variables extracted from approximately 32,000 locations covering the entire range, and compared using PCA and hierarchical cluster analysis. Results Although there is evidence of multiple introductions from divergent European lineages, North American populations of C. arvense exhibited significantly lower levels of genetic diversity than their putative ancestors. Bioclimatic comparisons pointed to a high degree of niche conservatism during invasion, but indicated that genotypes from the former USSR and Central European mountain chains were probably best adapted to invade North America upon entry into the continent. Main conclusions Genetic and historical data suggest that C. arvense first entered North America from Western Europe with the first European settlers, and was later introduced from Eastern Europe into the prairie states during the agricultural boom. The species went through a significant bottleneck following its introduction into the New World, but the level of genetic diversity remained high owing to admixture between genetically differentiated lineages and to a highly efficient outcrossing breeding system.  相似文献   

9.
Aim The European green crab (Carcinus maenas) expanded dramatically after its introduction to the west coast of North America, spreading over 1000 km in < 10 years. We use samples of Carcinus maenas collected over time and space to investigate the genetic patterns underlying the species’ initial establishment and spread, and discuss our findings in the context of the species’ life history characteristics and demography. Location The central west coast of North America, encompassing California, Oregon, and Washington (USA) and British Columbia (Canada). Methods We collected 1040 total samples from 21 sites representing the major episodes of population establishment and expansion along the west coast of North America. Microsatellite markers were used to assess genetic diversity and structure at different time points in the species’ spread, to investigate connectivity between embayments and to estimate both short‐term effective population sizes and the number of original founders. Assignment testing was performed to determine the likely source of the introduction. Results Carcinus maenas in western North America likely derived from a single introduction of a small number of founders to San Francisco Bay, CA from the east coast of North America. Throughout its western North American range, the species experiences periodic migration between embayments, resulting in a minor loss of genetic diversity in more recently established populations versus the populations in the area of initial establishment. Main conclusions Low genetic diversity has not precluded the ability of C. maenas to successfully establish and spread on the west coast of North America. An efficient oceanographic transport mechanism combined with highly conducive life history traits are likely the major drivers of C. maenas spread. Evidence for a single introduction underscores the potential utility of early detection and eradication of high‐risk invasive species.  相似文献   

10.
The origin of introduction of the cabbage root fly, Delia radicum Linnaeus to the north-eastern coast of North America in the 19th century has been assumed to be from Europe. From that point of introduction, D. radicum gradually spread westward to occupy available ecological niches. DNA fingerprinting and egg micromorphology were used to determine the most likely geographical origin of the North American populations of this species. Forty-five informative RAPD loci obtained from ten primers and three criteria for egg micromorphology were studied. These characters indicated a common origin for the North American populations and a high similarity between populations from North America and north-western Europe. The results suggest a single entrance point of D. radicum into North America, probably via the north-eastern coast (New York area) from north-western Europe. The implications of this study in assisting selection of natural enemies of this important agricultural pest are discussed.  相似文献   

11.
Identification of the source population of biological invasions has important consequences for the effective control and management of the invader. Tall annual willowherb (Epilobium brachycarpum) is a relatively recent and rapidly spreading neophyte in Europe that was first detected in 1978. Populations of tall annual willowherb from Germany and northern France were analysed by AFLP fingerprinting together with samples from five different localities in its native range in western North America. Three genetically different groups were found corresponding to different altitude zones in the native range. The FST is high among all samples indicating a strong genetical separation of the three groups. Invasive populations showed much lower genetic diversity than the native population. Additionally invasive populations revealed genetic affinities to North American specimens originating particularly from high mountain areas. The two large German populations and the population from northern France are genetically distinct while the individuals within the populations are genetically uniform. This suggests multiple introduction events rather than one introduction with consequent spreading across Europe. A third small German population from Treis-Karden in the Mosel valley clusters with North American lowland populations but suffers from frost damage and its permanent establishment is doubtful.  相似文献   

12.
The natural history of introduced species is often unclear due to a lack of historical records. Even when historical information is readily available, important factors of the invasions such as genetic bottlenecks, hybridization, historical relationships among populations and adaptive changes are left unknown. In this study, we developed a set of nuclear, simple sequence repeat markers and used these to characterize the genetic diversity and population structure among native (Eurasian) and non-native (North and South American) populations of Centaurea solstitialis L., (yellow starthistle). We used these data to test hypotheses about the invasion pathways of the species that were based on historical and geographical records, and we make inferences about historical relationships among populations and demographic processes following invasion. We confirm that the center of diversity and the native range of the species is likely the eastern Mediterranean region in the vicinity of Turkey. From this region, the species likely proceeded to colonize other parts of Europe and Asia via a slow, stepwise range expansion. Spanish populations were the primary source of seed to invade South America via human-mediated events, as was evident from historical records, but populations from the eastern Mediterranean region were also important. North American populations were largely derived from South America, but had secondary contributors. We suggest that the introduction history of non-native populations from disparate parts of the native range have allowed not just one, but multiple opportunities first in South America then again in North America for the creation of novel genotypes via intraspecific hybridization. We propose that multiple intraspecific hybridization events may have created especially potent conditions for the selection of a noxious invader, and may explain differences in genetic patterns among North and South America populations, inferred differences in demographic processes, as well as morphological differences previously reported from common garden experiments.  相似文献   

13.
This study examines a genome‐wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan‐Paezan and Equatorial‐Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan‐Paezan populations in Central America emerge together at the tips of the Chibchan‐Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan‐Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial‐Tucanoan and Ge‐Pano‐Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
F. Mestres  L. Serra    F. J. Ayala 《Genetics》1995,140(4):1297-1305
Drosophila subobscura is a Palearctic species that has recently colonized the Americas. It was first found in 1978 in Puerto Montt, Chile, and in 1982 in Port Townsend, WA. The colonization and rapid expansion of the species in western South and North America provides distinctive opportunities for investigating the process of evolution in action. The inversion polymorphism in the O chromosome from populations of central California and northern Washington, separated by 1300 km, corresponds to a previously observed latitudinal cline, also observed in Europe. Recessive lethal genes are not randomly distributed among the chromosomal arrangements. The incidence of lethal allelism is high, yielding unrealistically low estimates of the effective size of these populations (on the order of 1000 individuals). The high incidence of lethal allelism is likely to be a consequence of the low number of the American colonizers (on the order of 10-100 individuals), but the persistence of the allelism over several years suggests that some lethal-carrying chromosomes may be heterotic owing to shared associations between lethal and other genes.  相似文献   

15.
Neuffer B  Hurka H 《Molecular ecology》1999,8(10):1667-1681
Multilocus isozyme genotypic composition for aspartate aminotransferase (AAT), leucine aminopeptidase (LAP) and glutamate dehydrogenase (GDH) was studied for Capsella in the source continent, Europe (9000 plants from 593 populations), and in the colonized continent, North America (2700 plants from 88 populations). North America was depauperate in the number of genotypes (by approximately 50%), but in terms of frequencies, a few genotypes were common and shared by both continents. Although some, very rare, genotypes were, however, unique for North America, our data provided no evidence to indicate that the introduced gene pools were reconstructed on a multilocus genetic basis after introduction. Instead, they argued for a considerable number of independent introduction events. Geographical distribution patterns of multilocus genotypes in Europe and North America were pronounced and enabled us to trace the colonization history of Californian Capsella back to Spanish ancestral populations and those of temperate North America back to temperate European gene pools. A random-block field experiment with 14 Californian populations from different climatic regions revealed that variation patterns of quantitative traits reflect ecotypic variation, and the ecological amplitude of Capsella in North America is similar to that in Europe, which can be traced back to the introduction of preadapted genotypes. It appears that certain multilocus isozyme genotypes are associated with certain ecotypes. The variable European gene pool of Capsella was essentially introduced into North America without major genetic changes.  相似文献   

16.
Genomic ancestry of the American puma (Puma concolor)   总被引:4,自引:0,他引:4  
Puma concolor, a large American cat species, occupies the most extensive range of any New World terrestrial mammal, spanning 110 degrees of latitude from the Canadian Yukon to the Straits of Magellan. Until the recent Holocene, pumas coexisted with a diverse array of carnivores including the American lion (Panthera atrox), the North American cheetah (Miracynonyx trumani), and the saber toothed tiger (Smilodon fatalis). Genomic DNA specimens from 315 pumas of specified geographic origin (261 contemporary and 54 museum specimens) were collected for molecular genetic and phylogenetic analyses of three mitochondrial gene sequences (16S rRNA, ATPase-8, and NADH-5) plus composite microsatellite genotypes (10 feline loci). Six phylogeographic groupings or subspecies were resolved, and the entire North American population (186 individuals from 15 previously named subspecies) was genetically homogeneous in overall variation relative to central and South American populations. The marked uniformity of mtDNA and a reduction in microsatellite allele size expansion indicates that North American pumas derive from a recent (late Pleistocene circa 10,000 years ago) replacement and recolonization by a small number of founders who themselves originated from a centrum of puma genetic diversity in eastern South America 200,000-300,000 years ago. The recolonization of North American pumas was coincident with a massive late Pleistocene extinction event that eliminated 80% of large vertebrates in North America and may have extirpated pumas from that continent as well.  相似文献   

17.
Scaphoideus titanus, a leafhopper native to North America and invasive in Europe, is the vector of the Flavescence dorée phytoplasma, the causal agent of the most important form of grapevine yellows in European vineyards. We studied 10 polymorphic microsatellite loci and a 623 bp fragment of the mitochondrial cytochrome oxidase II gene in native S. titanus from north-eastern America and introduced European populations, to elucidate the colonization scenario. Consistent with their recent history, invasive European populations were less genetically diverse than American populations for both types of markers, suggesting a recent bottleneck. Significant isolation by distance was detected between American populations but not between European populations. None of the European mitochondrial haplotypes was found in the American vineyards, from which they are assumed to have originated. The precise source of the invasive S. titanus populations therefore remains unclear. Nevertheless, the high heterozygosity of North-East American populations (which contained 92% of the observed alleles) suggests that this region is part of the native range of S. titanus. Clustering population genetics analyses with microsatellite and mitochondrial data suggested that European populations originated from a single introduction event. Most of the introduced populations clustered with populations from Long Island, the Atlantic Coast winegrowing region in which Vitis aestivalis occurs.  相似文献   

18.
Drosophila melanogaster spread from sub-Saharan Africa to the rest of the world colonizing new environments. Here, we modeled the joint demography of African (Zimbabwe), European (The Netherlands), and North American (North Carolina) populations using an approximate Bayesian computation (ABC) approach. By testing different models (including scenarios with continuous migration), we found that admixture between Africa and Europe most likely generated the North American population, with an estimated proportion of African ancestry of 15%. We also revisited the demography of the ancestral population (Africa) and found—in contrast to previous work—that a bottleneck fits the history of the population of Zimbabwe better than expansion. Finally, we compared the site-frequency spectrum of the ancestral population to analytical predictions under the estimated bottleneck model.  相似文献   

19.
Admixture between differentiated populations is considered to be a powerful mechanism stimulating the invasive success of some introduced species. It is generally facilitated through multiple introductions; however, the importance of admixture prior to introduction has rarely been considered. We assess the likelihood that the invasive Ambrosia artemisiifolia populations of Europe and Australia developed through multiple introductions or were sourced from a historical admixture zone within native North America. To do this, we combine large genomic and sampling data sets analysed with approximate Bayesian computation and random forest scenario evaluation to compare single and multiple invasion scenarios with pre‐ and postintroduction admixture simultaneously. We show the historical admixture zone within native North America originated before global invasion of this weed and could act as a potential source of introduced populations. We provide evidence supporting the hypothesis that the invasive populations established through multiple introductions from the native range into Europe and subsequent bridgehead invasion into Australia. We discuss the evolutionary mechanisms that could promote invasiveness and evolutionary potential of alien species from bridgehead invasions and admixed source populations.  相似文献   

20.
Results of phylogenetic analysis based on 34 morphological characters of 24 species of 11 genera of Hopliinae from Europe, Japan, South Africa, Madagascar, North and Central America, indicates that the genus Hoplia is a monophyletic group with species distributed in Europe, Japan and America. Based in this analysis the Asiatic genus Ectinohoplia is the closest relative of the genus Hoplia, and the South American genus Barybas (Melolonthinae: Macrodactylini) is the sister group of Hopliinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号